summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--.gitignore4
-rw-r--r--library/topology/basis.tex20
-rw-r--r--vampire-taks-with-unexpacted-behavoir/50-plus-secounds-for-iff-stamtent.p6
-rw-r--r--vampire-taks-with-unexpacted-behavoir/topological-basis-behovoir.p26
4 files changed, 45 insertions, 11 deletions
diff --git a/.gitignore b/.gitignore
index 49c3120..cd7aa0f 100644
--- a/.gitignore
+++ b/.gitignore
@@ -41,6 +41,6 @@ premseldump/
haddocks/
stack.yaml.lock
zf*.svg
-Anmerkungen.txt
-vampire-taks-with-not-expacted-behavoir/
+
+
diff --git a/library/topology/basis.tex b/library/topology/basis.tex
index 61a358f..6fc07d3 100644
--- a/library/topology/basis.tex
+++ b/library/topology/basis.tex
@@ -79,36 +79,38 @@
\begin{lemma}\label{inters_in_genopens}
Assume $B$ is a topological basis for $X$.
- %For all $A, C$
- If $A\in \genOpens{B}{X}$ and $C\in \genOpens{B}{X}$ then $(A\inter C) \in \genOpens{B}{X}$.
+ Suppose $A, C\in \genOpens{B}{X}$.
+
+ Then $(A\inter C) \in \genOpens{B}{X}$.
\end{lemma}
\begin{proof}
Show $(A \inter C) \in \pow{X}$.
\begin{subproof}
- $(A \inter C) \subseteq X$ by assumption.
+ Omitted.
\end{subproof}
- Therefore for all $A, C \in \genOpens{B}{X}$ we have $(A \inter C) \in \pow{X}$.
Show for all $x\in (A\inter C)$ there exists $W \in B$
such that $x\in W$ and $W \subseteq (A\inter C)$.
\begin{subproof}
Fix $x \in (A\inter C)$.
- There exist $V' \in B$ such that $x \in V'$ and $V' \subseteq A$ by assumption. %TODO: Warum muss hier by assumtion hin?
- There exist $V'' \in B$ such that $x \in V''$ and $V'' \subseteq C$ by assumption.
- There exist $W \in B$ such that $x \in W$ and $W \subseteq v'$ and $W \subseteq V''$ by assumption.
+ $x \in A,C$.
+ There exist $V' \in B$ such that $x \in V'$ and $V' \subseteq A$ by \cref{genopens}.
+ There exist $V'' \in B$ such that $x \in V''$ and $V'' \subseteq C$ by \cref{genopens}.
+ $x \in (V' \inter V'')$.
+ There exist $W \in B$ such that $x \in W$ and $W \subseteq V'$ and $W \subseteq V''$.
Show $W \subseteq (A\inter C)$.
\begin{subproof}
%$W \subseteq v'$ and $W \subseteq V''$.
- For all $y \in W$ we have $y \in V'$ and $y \in V''$ by assumption.
+ For all $y \in W$ we have $y \in V'$ and $y \in V''$.
\end{subproof}
\end{subproof}
%Therefore for all $A, C, x$ such that $A \in \genOpens{B}{X}$ and $C \in \genOpens{B}{X}$ and $x \in (A \inter C)$ we have there exists $W \in B$
%such that $x\in W$ and $W \subseteq (A\inter C)$.
- $(A\inter C) \in \genOpens{B}{X}$ by assumption.
+ $(A\inter C) \in \genOpens{B}{X}$.
\end{proof}
diff --git a/vampire-taks-with-unexpacted-behavoir/50-plus-secounds-for-iff-stamtent.p b/vampire-taks-with-unexpacted-behavoir/50-plus-secounds-for-iff-stamtent.p
new file mode 100644
index 0000000..19ed046
--- /dev/null
+++ b/vampire-taks-with-unexpacted-behavoir/50-plus-secounds-for-iff-stamtent.p
@@ -0,0 +1,6 @@
+fof(inters_in_genopens,conjecture,unions(fB)=fX).
+fof(topological_basis,axiom,![XB,XX]:(topological_basis(XB,XX)<=>(unions(XB)=XX&![XU,XV,Xx]:((elem(XU,XB)&elem(XV,XB)&elem(Xx,XU)&elem(Xx,XV))=>?[XW]:(elem(XW,XB)&elem(Xx,XW)&subseteq(XW,XU)&subseteq(XW,XV)))))).
+fof(inters_in_genopens1,axiom,elem(fx,fVprimeprime)&subseteq(fVprimeprime,fC)&elem(fVprimeprime,fB)).
+fof(inters_in_genopens2,axiom,elem(fx,fVprime)&subseteq(fVprime,fA)&elem(fVprime,fB)).
+fof(inters_in_genopens3,axiom,elem(fx,inter(fA,fC))).
+fof(inters_in_genopens4,axiom,topological_basis(fB,fX)).
diff --git a/vampire-taks-with-unexpacted-behavoir/topological-basis-behovoir.p b/vampire-taks-with-unexpacted-behavoir/topological-basis-behovoir.p
new file mode 100644
index 0000000..76b03e4
--- /dev/null
+++ b/vampire-taks-with-unexpacted-behavoir/topological-basis-behovoir.p
@@ -0,0 +1,26 @@
+% It doesn't make sense for me that this task takes so long. It taks on my computer nearly 50-60 secounds.
+
+fof(inters_in_genopens,conjecture,?[XW]:(elem(XW,fB)&elem(fx,XW)&subseteq(XW,fvprime)&subseteq(XW,fVprimeprime))).
+%fof(topological_basis,axiom,![XB,XX]:(topological_basis(XB,XX)<=>(unions(XB)=XX&![XU,XV,Xx]:((elem(XU,XB)&elem(XV,XB)&elem(Xx,XU)&elem(Xx,XV))=>?[XW]:(elem(XW,XB)&elem(Xx,XW)&subseteq(XW,XU)&subseteq(XW,XV)))))).
+fof(inters_in_genopens1,axiom,elem(fx,fVprimeprime)&subseteq(fVprimeprime,fC)&elem(fVprimeprime,fB)).
+fof(inters_in_genopens2,axiom,elem(fx,fVprime)&subseteq(fVprime,fA)&elem(fVprime,fB)).
+fof(inters_in_genopens3,axiom,elem(fx,inter(fA,fC))).
+fof(inters_in_genopens4,axiom,topological_basis(fB,fX)).
+
+fof(topological_basis1,axiom,![XU,XV,Xx]:((elem(XU,fB)&elem(XV,fB)&elem(Xx,XU)&elem(Xx,XV))=>?[XW]:(elem(XW,fB)&elem(Xx,XW)&subseteq(XW,XU)&subseteq(XW,XV)))).
+
+fof(inters_in_genopens10,axiom,subseteq(fVprime,fA)).
+fof(inters_in_genopens11,axiom,subseteq(fVprimeprime,fC)).
+fof(inters_in_genopens12,axiom,elem(fx,fVprime)).
+fof(inters_in_genopens13,axiom,elem(fx,fVprimeprime)).
+
+
+% the task (unions(fB)=fX) takes only 0.2 secounds
+% but if it is stated as an axiom it doesn't effect any proof time.
+
+
+% with this axiom it takes 27 secounds so it improve the overall time,
+% but this axiom is just a "and" more and combines axiom 1 and 2
+% fof(inters_in_genopens5,axiom,elem(fVprimeprime,fB)&elem(fVprimeprime,fB)&elem(fx,fVprime)&elem(fx,fVprimeprime)).
+
+% fof(topological_basis1,axiom,![XU,XV,Xx]:((elem(XU,fB)&elem(XV,fB)&elem(Xx,XU)&elem(Xx,XV))=>?[XW]:(elem(XW,fB)&elem(Xx,XW)&subseteq(XW,XU)&subseteq(XW,XV)))). \ No newline at end of file