summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--library/wunschzettel.tex108
1 files changed, 0 insertions, 108 deletions
diff --git a/library/wunschzettel.tex b/library/wunschzettel.tex
deleted file mode 100644
index 74ea899..0000000
--- a/library/wunschzettel.tex
+++ /dev/null
@@ -1,108 +0,0 @@
-%This is just a .tex file with a wishlist of functionalitys
-
-
-Tupel struct
-
-\newtheorem{struct2}[theoremcount]{Struct2}
-
-\begin{theorem}
- %Some Theorem.
-\end{theorem}
-\begin{proof}
- %Wish for nice Function definition. ---------------------
-
- %Some Proof where we need a Function.
- %Privisuly defined.
- $n \in \naturals$.
- There is a Set $A = \{A_{0}, ..., A_{n}\}$.
- For all $i$ we have $A_{i} \subseteq X$.
-
- Define function $f: X \to Y$,
- \begin{align}
- &x \mapsto \rfrac{y}{n} &; if \exists k \in \{1, ... n\}. x \in A_{k} \\
- &x \mapsto 0 &; if x \phi(x) \\
- %phi is some fol formula
-
- &x \mapsto \eta &; for \phi(x) and \psi(\eta)
-
- &x \mapsto \some_term(x)(u)(v)(w) &; \exist.u,v,w \psi(x)(u)(v)(w) \\
- % here i see the real need of varibles that can be useds in the define term
-
- &x \mapsto \some_else_term(x) &; else
- % the else term would be great
-
- % the following axioms should be automaticly added.
- % \dom{f} = X
- % \ran{f} \subseteq Y
- % f is function
-
- % therefor we should add the prompt for a proof that f is well defined
- \end{align}
- \begin{proof_well_defined}
- % we need to proof that f allways maps X to Y
- \end{proof_well_defined}
-
- % more proof but now i can use the function f
-
- % --------------------------------------------------------
- \begin{equation}
- X=
- \begin{cases}
- 0, & \text{if}\ a=1 \\
- 1, & \text{otherwise}
- \end{cases}
- \end{equation}
-
-
-
-
-\end{proof}
-
-
-%------------------------------------------
-% My wish for a new struct
-% I think this could be just get implemented along with the old struct
-
-
-% If take we only take tupels,
-% then just a list of defining fol formulas should be enougth.
-\begin{struct2}
- We say $(X,O)$ is a topological space if
- \begin{enumerate}
- \item $X$ is a set. % or X = \{...\mid .. \} or X = \naturals ... or ...
- \item $O \subseteq \pow X$.
- \item $\forall x,y \in O. x \union y \in O$
- \item %another formula
- \item %....
- \end{enumerate}
-\end{struct2}
-
-
-% Then the proof of some thing is a structure is more easy.
-% Since if we have just a tupel and some formulas which has to be fufilled,
-% then we can make a proof as follows.
-
-\begin{struct2}
- We say $(A,i,N)$ is a indexed set if
- \begin{enumerate}
- \item $f$ is a bijection from $N$ to $A$
- \item $N \subseteq \naturals$
- \end{enumerate}
-\end{struct2}
-
-
-\begin{theorem}
- Let $A = \{ \{n\} \mid n \in \naturals \}$.
- Let function $f: \naturals \to \pow{\naturals}$ such that,
- \begin{algin}
- \item x \mapsto \{x\} ; x \in \naturals
- \end{algin}
- Then $(A, f, \naturals)$ is a indexed set.
-\end{theorem}
-\begin{proof}
- % Then we only need to proof that:
- % \ran{f} = A
- % \dom{f} = \naturals
- % f is a bijection between $\naturals$ to $A$.
-\end{proof}
-