summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--library/set.tex3
-rw-r--r--library/topology/basis.tex2
2 files changed, 4 insertions, 1 deletions
diff --git a/library/set.tex b/library/set.tex
index 2fd18ea..69b9526 100644
--- a/library/set.tex
+++ b/library/set.tex
@@ -654,6 +654,9 @@ The $\operatorname{\textsf{cons}}$ operation is determined by the following axio
Suppose $(A\inter B)\union C = A\inter (B\union C)$.
Then $C\subseteq A$.
\end{proposition}
+\begin{proof}
+ Follows by \cref{union_upper_right,union_upper_left,subseteq_union_iff,subseteq_antisymmetric,subseteq_inter_iff}.
+\end{proof}
% From Isabelle/ZF equalities theory
\begin{proposition}\label{union_inter_crazy}
diff --git a/library/topology/basis.tex b/library/topology/basis.tex
index bd7d15a..052c551 100644
--- a/library/topology/basis.tex
+++ b/library/topology/basis.tex
@@ -64,7 +64,7 @@
Then $\unions{F}\in\genOpens{B}{X}$.
\end{lemma}
\begin{proof}
- We have $\unions{F} \in \pow{X}$.
+ We have $\unions{F} \in \pow{X}$ by \cref{genopens,subseteq,pow_iff,unions_family,powerset_elim}.
Show for all $x\in \unions{F}$ there exists $W \in B$
such that $x\in W$ and $W \subseteq \unions{F}$.