diff options
| -rw-r--r-- | library/topology/basis.tex | 13 |
1 files changed, 7 insertions, 6 deletions
diff --git a/library/topology/basis.tex b/library/topology/basis.tex index f0f77e4..cc9d7e5 100644 --- a/library/topology/basis.tex +++ b/library/topology/basis.tex @@ -101,6 +101,8 @@ $B$ covers $X$ by \cref{topological_prebasis_iff_covering_family,topological_basis}. $\unions{B} \in \genOpens{B}{X}$. $X \subseteq \unions{B}$. + For all $x\in X$ there exists $V\in B$ such that $x\in V\subseteq X$. + Follows by \cref{powerset_top,genopens}. \end{proof} \begin{lemma}\label{inters_in_genopens} @@ -112,17 +114,16 @@ We have $(A \inter C) \in \pow{X}$ by \cref{genopens,inter_powerset}. - - Show for all $x\in (A\inter C)$ there exists $W \in B$ - such that $x\in W$ and $W \subseteq (A\inter C)$. + Show for all $x\in A\inter C$ there exists $W \in B$ + such that $x\in W$ and $W \subseteq A\inter C$. \begin{subproof} - Fix $x \in (A\inter C)$. + Fix $x \in A\inter C$. Then $x\in A,C$. There exists $V' \in B$ such that $x \in V' \subseteq A$ by \cref{genopens}. There exists $V'' \in B$ such that $x \in V''\subseteq C$ by \cref{genopens}. - There exists $W \in B$ such that $x \in W$ and $W \subseteq V'$ and $W \subseteq V''$ by \cref{topological_basis}. + There exists $W \in B$ such that $x \in W \subseteq V', V''$ by \cref{topological_basis}. - Show $W \subseteq (A\inter C)$. + Show $W \subseteq A\inter C$. \begin{subproof} For all $y \in W$ we have $y \in V'$ and $y \in V''$. \end{subproof} |
