summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--library/relation/equivalence.tex2
-rw-r--r--library/set.tex26
-rw-r--r--library/set/regularity.tex9
-rw-r--r--library/set/suc.tex2
-rw-r--r--library/topology/urysohntwo.tex92
5 files changed, 64 insertions, 67 deletions
diff --git a/library/relation/equivalence.tex b/library/relation/equivalence.tex
index 0c5dbfa..f8b1ba7 100644
--- a/library/relation/equivalence.tex
+++ b/library/relation/equivalence.tex
@@ -180,7 +180,7 @@
\begin{proof}
Take $a\in A$ such that $C = \equivalenceClass{E}{a}$.
Then $a\in \equivalenceClass{E}{a}$.
- $C$ is inhabited by \cref{quotient,inhabited,equivclasses_inhabited}.
+ $C$ is inhabited by \cref{quotient,equivclasses_inhabited}.
\end{proof}
\begin{proposition}\label{quotient_elems_type}
diff --git a/library/set.tex b/library/set.tex
index 914e10b..1f7a76a 100644
--- a/library/set.tex
+++ b/library/set.tex
@@ -107,25 +107,28 @@ which applies it to goals of the form “$A = B$” and “$A \neq B$”.
\subsection{The empty set}
-\begin{axiom}%
-\label{notin_emptyset}
+\begin{axiom}\label{emptyset}
For all $a$ we have $a\notin\emptyset$.
\end{axiom}
-\begin{definition}\label{inhabited}
+\begin{abbreviation}\label{inhabited}
$A$ is inhabited iff
there exists $a$ such that $a\in A$.
-\end{definition}
+\end{abbreviation}
\begin{abbreviation}\label{empty}
- $A$ is empty iff $A$ is not inhabited.
+ $A$ is empty iff for all $x$ we have $x\notin A$.
\end{abbreviation}
-%\begin{proposition}%
-%\label{inhabited_iff_nonempty}
-% $A$ is inhabited iff $A$ is not empty.
+\begin{proposition}\label{nonempty_inhabited}
+ Suppose $A\neq\emptyset$. Then $A$ is inhabited.
+\end{proposition}
+
+%\begin{proposition}\label{empty_iff_emptyset}
+% $A$ is empty iff $A = \emptyset$.
%\end{proposition}
+
\begin{proposition}%
\label{empty_eq}
If $x$ and $y$ are empty, then $x = y$.
@@ -133,7 +136,6 @@ which applies it to goals of the form “$A = B$” and “$A \neq B$”.
\begin{proposition}\label{emptyset_subseteq}
For all $a$ we have $\emptyset \subseteq a$.
- % LATER $\emptyset$ is a subset of every set.
\end{proposition}
\begin{proposition}%
@@ -349,6 +351,7 @@ The $\operatorname{\textsf{cons}}$ operation is determined by the following axio
If $c\in B$, then $c\in A\union B$.
\end{proposition}
+% TODO SLOW
\begin{proposition}\label{union_as_unions}
$\unions{\{x,y\}} = x\union y$.
\end{proposition}
@@ -586,8 +589,7 @@ The $\operatorname{\textsf{cons}}$ operation is determined by the following axio
Suppose $A\inter B = A$. Then $A\subseteq B$.
\end{proposition}
-\begin{proposition}%
-\label{subseteq_inter_iff}
+\begin{proposition}\label{subseteq_inter_iff}
$C\subseteq A\inter B$ iff $C\subseteq A$ and $C\subseteq B$.
\end{proposition}
@@ -944,7 +946,7 @@ There are primitive projections $\fst{}$ and $\snd{}$ that satisfy the following
$X\times Y$ is empty iff $X$ is empty or $Y$ is empty.
\end{proposition}
\begin{proof}
- Follows by \cref{inhabited,times}.
+ Follows by \cref{times}.
\end{proof}
\begin{proposition}\label{fst_type}
diff --git a/library/set/regularity.tex b/library/set/regularity.tex
index 794d34f..068d6a8 100644
--- a/library/set/regularity.tex
+++ b/library/set/regularity.tex
@@ -31,7 +31,7 @@
Then there exists a \in-minimal element of $A$.
\end{proposition}
\begin{proof}
- Follows by \cref{regularity_aux,inhabited}.
+ Follows by \cref{regularity_aux}.
\end{proof}
@@ -44,10 +44,11 @@
\begin{proof}
\begin{byCase}
\caseOf{$A = \emptyset$.}
- Straightforward.
- \caseOf{$A$ is inhabited.}
- Take $a$ such that $a$ is a \in-minimal element of $A$.
+ Follows by assumption.
+ \caseOf{$A \neq\emptyset$.}
+ Take $a$ such that $a$ is a \in-minimal element of $A$ by \cref{nonempty_inhabited,regularity}.
Then for all $x\in a$ we have $x\notin A$.
+ Follows by assumption.
\end{byCase}
\end{proof}.
diff --git a/library/set/suc.tex b/library/set/suc.tex
index 3776045..ecfa701 100644
--- a/library/set/suc.tex
+++ b/library/set/suc.tex
@@ -1,7 +1,7 @@
\import{set/cons.tex}
\import{set/regularity.tex}
-\subsection{Successor}
+\subsection{Ordinal successor}
\begin{definition}\label{suc}
$\suc{x} = \cons{x}{x}$.
diff --git a/library/topology/urysohntwo.tex b/library/topology/urysohntwo.tex
index a1a3ba0..68faeac 100644
--- a/library/topology/urysohntwo.tex
+++ b/library/topology/urysohntwo.tex
@@ -30,7 +30,7 @@
$X$ is a topological space and
for all $A,B \in \closeds{X}$ such that $A \inter B = \emptyset$
we have there exist $A',B' \in \opens[X]$
- such that $A \subseteq A'$ and $B \subseteq B'$ and $A' \inter B' = \emptyset$.
+ such that $A \subseteq A'$ and $B \subseteq B'$ and $A' \inter B' = \emptyset$.
\end{abbreviation}
@@ -40,7 +40,7 @@
\begin{definition}\label{chain_of_subsets}
- $X$ is a chain of subsets in $Y$ iff $X$ is a sequence and for all $n \in \dom{X}$ we have $\at{X}{n} \subseteq \carrier[Y]$ and for all $m \in \dom{X}$ such that $n < m$ we have $\at{X}{n} \subseteq \at{X}{m}$.
+ $X$ is a chain of subsets in $Y$ iff $X$ is a sequence and for all $n \in \dom{X}$ we have $\at{X}{n} \subseteq \carrier[Y]$ and for all $m \in \dom{X}$ such that $n < m$ we have $\at{X}{n} \subseteq \at{X}{m}$.
\end{definition}
@@ -52,7 +52,7 @@
$A$ is finer between $B$ to $C$ in $X$ iff $\closure{B}{X} \subseteq \interior{A}{X}$ and $\closure{A}{X} \subseteq \interior{C}{X}$.
\end{definition}
-\begin{definition}\label{finer} %<-- verfeinerung
+\begin{definition}\label{finer} %<-- verfeinerung
$A$ is finer then $B$ in $X$ iff for all $n \in \dom{B}$ we have $\at{B}{n} \in \ran{A}$ and for all $m \in \dom{B}$ such that $n < m$ we have there exist $k \in \dom{A}$ such that $\at{A}{k}$ is finer between $\at{B}{n}$ to $\at{B}{m}$ in $X$.
\end{definition}
@@ -140,8 +140,8 @@
\end{proof}
\begin{proposition}\label{naturals_elem_in_transitive}
- If $n \in \naturals$ then $n$ is \in-transitive and every element of $n$ is \in-transitive.
- %If $n$ is a natural number then $n$ is \in-transitive and every element of $n$ is \in-transitive.
+ If $n \in \naturals$ then $n$ is \in-transitive and every element of $n$ is \in-transitive.
+ %If $n$ is a natural number then $n$ is \in-transitive and every element of $n$ is \in-transitive.
\end{proposition}
\begin{proposition}\label{natural_number_is_ordinal_for_all}
@@ -222,10 +222,10 @@
\end{proposition}
\begin{proof}[Proof by \in-induction on $n$]
Assume $n \in \naturals$.
-
+
\begin{byCase}
- \caseOf{$n = \zero$.}
-
+ \caseOf{$n = \zero$.}
+
We show that for all $m \in \naturals$ such that $m < n$ we have there exist $k \in \naturals$ such that $m + k = n$.
\begin{subproof}[Proof by \in-induction on $m$]
Assume $m \in \naturals$.
@@ -240,7 +240,7 @@
Fix $m$.
For all $l \in \naturals$ we have if $l < 1$ then $l = \zero$.
Then $\zero + 1 = 1$.
- \caseOf{$n > 1$.}
+ \caseOf{$n > 1$.}
Take $l \in \naturals$ such that $\suc{l} = n$.
Omitted.
\end{byCase}
@@ -248,7 +248,7 @@
\begin{proposition}\label{rless_eq_in_for_naturals}
- For all $n,m \in \naturals$ such that $n < m$ we have $n \in m$.
+ For all $n,m \in \naturals$ such that $n < m$ we have $n \in m$.
\end{proposition}
\begin{proof}
We show that for all $n \in \naturals$ we have for all $m \in \naturals$ such that $m < n$ we have $m \in n$.
@@ -259,7 +259,7 @@
Assume $m \in \naturals$.
\begin{byCase}
\caseOf{$\suc{m}=n$.}
- \caseOf{$\suc{m}\neq n$.}
+ \caseOf{$\suc{m}\neq n$.}
\begin{byCase}
\caseOf{$n = \zero$.}
\caseOf{$n \neq \zero$.}
@@ -270,18 +270,18 @@
\end{byCase}
\end{subproof}
\end{subproof}
-
+
%Fix $n \in \naturals$.
%\begin{byCase}
% \caseOf{$n = \zero$.}
% For all $k \in \naturals$ we have $k = \zero$ or $\zero < k$.
- %
+ %
% \caseOf{$n \neq \zero$.}
% Fix $m \in \naturals$.
% It suffices to show that $m \in n$.
%\end{byCase}
-
+
\end{proof}
@@ -342,7 +342,7 @@
It suffices to show that for all $x \in \seq{\zero}{k} \union \{n\}$ we have $x \in \seq{\zero}{n}$.
$k \leq n$ by \cref{naturals_subseteq_reals,suc_eq_plus_one,plus_one_order,subseteq}.
$k \in n$.
- $\seq{\zero}{k} = \suc{k}$ by assumption.
+ $\seq{\zero}{k} = \suc{k}$ by assumption.
$n \in \naturals$.
$\zero \leq n$.
$n \leq n$.
@@ -379,8 +379,8 @@
% Take $k$ such that $k \in \naturals$ and $\suc{k} = m$.
% Then $k \in m$.
%\end{subproof}
-
-
+
+
%For all $n \in \naturals$ we have either $n = \zero$ or there exist $m \in \naturals$ such that $n = \suc{m}$.
%For all $n \in \naturals$ we have either $n = \zero$ or $\zero \in n$.
%We show that if $\seq{\zero}{n}$ has cardinality $\suc{n}$ then $\seq{\zero}{\suc{n}}$ has cardinality $\suc{\suc{n}}$.
@@ -467,7 +467,7 @@
Suppose $f$ is a bijection from $X$ to $Y$.
Suppose $g$ is a function from $X$ to $Y$.
Suppose $g$ is injective.
- Suppose $X$ is finite and $Y$ is finite.
+ Suppose $X$ is finite and $Y$ is finite.
For all $n \in \naturals$ such that $Y$ has cardinality $n$ we have $g$ is a bijection from $X$ to $Y$.
\end{lemma}
\begin{proof}[Proof by \in-induction on $n$]
@@ -475,20 +475,20 @@
Suppose $Y$ has cardinality $n$.
$X$ has cardinality $n$ by \cref{bijection_converse_is_bijection,bijection_circ,regularity,cardinality,foundation,empty_eq,notin_emptyset}.
\begin{byCase}
- \caseOf{$n = \zero$.}
+ \caseOf{$n = \zero$.}
Follows by \cref{converse_converse_eq,injective_converse_is_function,converse_is_relation,dom_converse,id_is_function_to,id_ran,ran_circ_exact,circ,ran_converse,emptyset_is_function_on_emptyset,bijective_converse_are_funs,relext,function_member_elim,bijection_is_function,cardinality,bijections_dom,in_irrefl,codom_of_emptyset_can_be_anything,converse_emptyset,funs_elim,neq_witness,id}.
\caseOf{$n \neq \zero$.}
%Take $n' \in n$ such that $n = \suc{n'}$.
%$n' \in \naturals$.
%$n' + 1 = n$.
- %Take $y$ such that $y \in Y$ by \cref{funs_type_apply,apply,bijections_to_funs,cardinality,foundation}.
+ %Take $y$ such that $y \in Y$ by \cref{funs_type_apply,apply,bijections_to_funs,cardinality,foundation}.
%Let $Y' = Y \setminus \{y\}$.
%$Y' \subseteq Y$.
%$Y'$ is finite.
%There exist $m \in \naturals$ such that $Y'$ has cardinality $m$.
%Take $m \in \naturals$ such that $Y'$ has cardinality $m$.
%Then $Y'$ has cardinality $n'$.
- %Let $x' = \apply{\converse{f}}{y'}$.
+ %Let $x' = \apply{\converse{f}}{y'}$.
%$x' \in X$.
%Let $X' = X \setminus \{x'\}$.
%$X' \subseteq X$.
@@ -526,7 +526,7 @@
Suppose $f$ is a bijection from $X$ to $Y$.
Suppose $g$ is a function from $X$ to $Y$.
Suppose $g$ is injective.
- Suppose $Y$ is finite.
+ Suppose $Y$ is finite.
Then $g$ is a bijection from $X$ to $Y$.
\end{lemma}
\begin{proof}
@@ -553,7 +553,7 @@
$\identity{n}$ is a function from $n$ to $m$.
$\identity{n}$ is injective.
$\apply{\identity{n}}{n} = n$ by \cref{id_ran,ran_of_surj,bijections,injective_functions_is_bijection_if_bijection_there_is_other_bijection}.
- Follows by \cref{inhabited,regularity,function_apply_default,apply,id_dom,in_irrefl,function_member_elim,bijections_dom,zero_is_empty,bijection_is_function,foundation,bijections,ran_of_surj,dom_converse,converse_emptyset,dom_emptyset}.
+ Follows by \cref{regularity,function_apply_default,apply,id_dom,in_irrefl,function_member_elim,bijections_dom,zero_is_empty,bijection_is_function,foundation,bijections,ran_of_surj,dom_converse,converse_emptyset,dom_emptyset}.
\caseOf{$m < n$.}
Then $m \in n$.
There exist $x \in n$ such that $x \notin m$.
@@ -561,7 +561,7 @@
$\identity{m}$ is a function from $m$ to $n$.
$\identity{m}$ is injective.
$\apply{\identity{m}}{m} = m$ by \cref{id_ran,ran_of_surj,bijections,injective_functions_is_bijection_if_bijection_there_is_other_bijection}.
- Follows by \cref{inhabited,regularity,function_apply_default,apply,id_dom,in_irrefl,function_member_elim,bijections_dom,zero_is_empty,bijection_is_function,foundation,bijections,ran_of_surj,dom_converse,converse_emptyset,dom_emptyset}.
+ Follows by \cref{regularity,function_apply_default,apply,id_dom,in_irrefl,function_member_elim,bijections_dom,zero_is_empty,bijection_is_function,foundation,bijections,ran_of_surj,dom_converse,converse_emptyset,dom_emptyset}.
\end{byCase}
\end{proof}
@@ -578,7 +578,7 @@
\begin{subproof}%[Proof by \in-induction on $k$]
%Assume $k \in \naturals$.
%\begin{byCase}
- % \caseOf{$k = \zero$.}
+ % \caseOf{$k = \zero$.}
% Trivial.
% \caseOf{$k \neq \zero$.}
% \begin{byCase}
@@ -589,7 +589,7 @@
% Then $k' \in k$.
% Take $m' \in \naturals$ such that $m = \suc{m'}$.
% Then $m' \in m$.
- %
+ %
% \end{byCase}
%\end{byCase}
\end{subproof}
@@ -622,12 +622,12 @@
\begin{proof}
Take $n$ such that $\dom{U}$ has cardinality $n$ by \cref{ran_converse,cardinality,finite}.
\begin{byCase}
- \caseOf{$n = \zero$.}
+ \caseOf{$n = \zero$.}
Omitted.
\caseOf{$n \neq \zero$.}
- Take $k$ such that $k \in \naturals$ and $\suc{k}=n$.
+ Take $k$ such that $k \in \naturals$ and $\suc{k}=n$.
We have $\dom{U} \subseteq \naturals$.
- $\dom{U}$ is inhabited by \cref{downward_closure,downward_closure_iff,rightunique,function_member_elim,inhabited,chain_of_subsets,urysohnchain,sequence}.
+ $\dom{U}$ is inhabited by \cref{downward_closure,downward_closure_iff,rightunique,function_member_elim,chain_of_subsets,urysohnchain,sequence}.
$\dom{U}$ has cardinality $\suc{k}$.
We show that there exist $F$ such that $F$ is a bijection from $\seq{\zero}{k}$ to $\dom{U}$ and for all $n',m' \in \seq{\zero}{k}$ such that $n' < m'$ we have $F(n') < F(m')$.
\begin{subproof}
@@ -647,7 +647,7 @@
% Fix $y \in \seq{\emptyset}{k'}$.
% Then $y \leq k'$.
% Therefore $y \in k'$ or $y = k'$ by \cref{omega_is_an_ordinal,suc_intro_self,ordinal_transitivity,cardinality,rless_eq_in_for_naturals,m_to_n_set}.
- %
+ %
% Therefore $y \in \suc{k}$.
% Therefore $y \in \seq{\emptyset}{k}$.
% \end{subproof}
@@ -695,7 +695,7 @@
\end{subproof}
$V$ is normal ordered.
\end{byCase}
-
+
\end{proof}
@@ -757,7 +757,7 @@
\begin{lemma}\label{intervalclosed_border_is_elem}
Suppose $a,b \in \reals$.
Suppose $a < b$.
- Then $a,b \in \intervalclosed{a}{b}$.
+ Then $a,b \in \intervalclosed{a}{b}$.
\end{lemma}
\begin{lemma}\label{urysohnchain_subseteqrel}
@@ -792,7 +792,7 @@
\end{cases}$
$U_0$ is a function.
$\dom{U_0} = N$.
- $\dom{U_0} \subseteq \naturals$ by \cref{ran_converse}.
+ $\dom{U_0} \subseteq \naturals$ by \cref{ran_converse}.
$U_0$ is a sequence.
We have $1, \zero \in N$.
We show that $U_0$ is a chain of subsets in $X$.
@@ -807,11 +807,11 @@
Fix $m \in \dom{U_0}$.
\begin{byCase}
- \caseOf{$n \neq \zero$.}
+ \caseOf{$n \neq \zero$.}
Trivial.
- \caseOf{$n = \zero$.}
+ \caseOf{$n = \zero$.}
\begin{byCase}
- \caseOf{$m = \zero$.}
+ \caseOf{$m = \zero$.}
Trivial.
\caseOf{$m \neq \zero$.}
We have $A \subseteq A'$.
@@ -828,14 +828,14 @@
Fix $n \in \dom{U_0}$.
Fix $m \in \dom{U_0}$.
\begin{byCase}
- \caseOf{$n \neq \zero$.}
+ \caseOf{$n \neq \zero$.}
Follows by \cref{ran_converse,upair_iff,one_in_reals,order_reals_lemma0,reals_axiom_zero_in_reals,reals_one_bigger_zero,reals_order}.
- \caseOf{$n = \zero$.}
+ \caseOf{$n = \zero$.}
\begin{byCase}
- \caseOf{$m = \zero$.}
+ \caseOf{$m = \zero$.}
Trivial.
\caseOf{$m \neq \zero$.}
- Follows by \cref{setminus_emptyset,setdifference_eq_intersection_with_complement,setminus_self,interior_carrier,complement_interior_eq_closure_complement,subseteq_refl,closure_interior_frontier_is_in_carrier,emptyset_subseteq,closure_is_minimal_closed_set,inter_lower_right,inter_lower_left,subseteq_transitive,interior_of_open,is_closed_in,closeds,union_absorb_subseteq_right,ordinal_suc_subseteq,ordinal_empty_or_emptyset_elem,union_absorb_subseteq_left,union_emptyset,topological_prebasis_iff_covering_family,inhabited,notin_emptyset,subseteq,union_as_unions,natural_number_is_ordinal}.
+ Follows by \cref{setminus_emptyset,setdifference_eq_intersection_with_complement,setminus_self,interior_carrier,complement_interior_eq_closure_complement,subseteq_refl,closure_interior_frontier_is_in_carrier,emptyset_subseteq,closure_is_minimal_closed_set,inter_lower_right,inter_lower_left,subseteq_transitive,interior_of_open,is_closed_in,closeds,union_absorb_subseteq_right,ordinal_suc_subseteq,ordinal_empty_or_emptyset_elem,union_absorb_subseteq_left,union_emptyset,topological_prebasis_iff_covering_family,notin_emptyset,subseteq,union_as_unions,natural_number_is_ordinal}.
\end{byCase}
\end{byCase}
\end{subproof}
@@ -874,7 +874,7 @@
Fix $x \in \dom{f}$.
$f(x)$ is the staircase limit of $S$ with $x$.
Therefore $f(x) \in \reals$.
-
+
We show that for all $n \in \naturals$ we have $\apply{\at{S}{n}}{x} \in \intervalclosed{\zero}{1}$.
\begin{subproof}
Fix $n \in \naturals$.
@@ -913,7 +913,7 @@
\end{byCase}
\end{byCase}
-
+
%$\at{S}{n}$ is a staircase function adapted to $\at{U}{n}$ in $X$.
%$\at{U}{n}$ is a urysohnchain of $X$.
@@ -979,11 +979,5 @@
\end{proof}
%\begin{theorem}\label{safe}
-% Contradiction.
+% Contradiction.
%\end{theorem}
-
-
-
-
-
-