summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--library/numbers.tex40
-rw-r--r--library/topology/real-topological-space.tex26
-rw-r--r--library/topology/urysohn2.tex108
3 files changed, 125 insertions, 49 deletions
diff --git a/library/numbers.tex b/library/numbers.tex
index f7f6c2c..cb3d5cf 100644
--- a/library/numbers.tex
+++ b/library/numbers.tex
@@ -747,9 +747,49 @@ Laws of the order on the reals
$x$ is the supremum of $X$ iff $x$ is a greatest lower bound of $X$.
\end{definition}
+\begin{definition}\label{minimum}
+ $\min{X} = \{x \in X \mid \forall y \in X. x \leq y \}$.
+\end{definition}
+
+
+\begin{definition}\label{maximum}
+ $\max{X} = \{x \in X \mid \forall y \in X. x \geq y \}$.
+\end{definition}
+
+
+\begin{definition}\label{intervalclosed}
+ $\intervalclosed{a}{b} = \{x \in \reals \mid a \leq x \leq b\}$.
+\end{definition}
+
+
+\begin{definition}\label{intervalopen}
+ $\intervalopen{a}{b} = \{ x \in \reals \mid a < x < b\}$.
+\end{definition}
+\begin{definition}\label{m_to_n_set}
+ $\seq{m}{n} = \{x \in \naturals \mid m \leq x \leq n\}$.
+\end{definition}
+
+\begin{axiom}\label{abs_behavior1}
+ If $x \geq \zero$ then $\abs{x} = x$.
+\end{axiom}
+
+\begin{axiom}\label{abs_behavior2}
+ If $x < \zero$ then $\abs{x} = \neg{x}$.
+\end{axiom}
+\begin{definition}\label{realsminus}
+ $\realsminus = \{r \in \reals \mid r < \zero\}$.
+\end{definition}
+
+\begin{definition}\label{realsplus}
+ $\realsplus = \reals \setminus \realsminus$.
+\end{definition}
+
+\begin{definition}\label{epsilon_ball}
+ $\epsBall{x}{\epsilon} = \intervalopen{x-\epsilon}{x+\epsilon}$.
+\end{definition}
diff --git a/library/topology/real-topological-space.tex b/library/topology/real-topological-space.tex
new file mode 100644
index 0000000..239965c
--- /dev/null
+++ b/library/topology/real-topological-space.tex
@@ -0,0 +1,26 @@
+\import{set.tex}
+\import{set/cons.tex}
+\import{set/powerset.tex}
+\import{set/fixpoint.tex}
+\import{set/product.tex}
+\import{topology/topological-space.tex}
+\import{topology/separation.tex}
+\import{topology/continuous.tex}
+\import{topology/basis.tex}
+\import{numbers.tex}
+\import{function.tex}
+
+
+\section{The canonical topology on $\mathbbR$}
+
+\begin{definition}\label{topological_basis_reals_eps_ball}
+ $\topoBasisReals = \{ \epsBall{x}{\epsilon} \mid x \in \reals, \epsilon \in \realsplus\}$.
+\end{definition}
+
+\begin{theorem}\label{reals_as_topo_space}
+ Suppose $\opens[\reals] = \genOpens{\topoBasisReals}{\reals}$.
+ Then $\reals$ is a topological space.
+\end{theorem}
+\begin{proof}
+ Omitted.
+\end{proof} \ No newline at end of file
diff --git a/library/topology/urysohn2.tex b/library/topology/urysohn2.tex
index dbcfc53..a3f3ea4 100644
--- a/library/topology/urysohn2.tex
+++ b/library/topology/urysohn2.tex
@@ -12,32 +12,11 @@
\import{set/powerset.tex}
\import{set/fixpoint.tex}
\import{set/product.tex}
+\import{topology/real-topological-space.tex}
\section{Urysohns Lemma}
-\begin{definition}\label{minimum}
- $\min{X} = \{x \in X \mid \forall y \in X. x \leq y \}$.
-\end{definition}
-
-
-\begin{definition}\label{maximum}
- $\max{X} = \{x \in X \mid \forall y \in X. x \geq y \}$.
-\end{definition}
-
-
-\begin{definition}\label{intervalclosed}
- $\intervalclosed{a}{b} = \{x \in \reals \mid a \leq x \leq b\}$.
-\end{definition}
-
-
-\begin{definition}\label{intervalopen}
- $\intervalopen{a}{b} = \{ x \in \reals \mid a < x < b\}$.
-\end{definition}
-
-\begin{definition}\label{one_to_n_set}
- $\seq{m}{n} = \{x \in \naturals \mid m \leq x \leq n\}$.
-\end{definition}
\begin{definition}\label{sequence}
@@ -89,26 +68,6 @@
\end{definition}
-\begin{axiom}\label{abs_behavior1}
- If $x \geq \zero$ then $\abs{x} = x$.
-\end{axiom}
-
-\begin{axiom}\label{abs_behavior2}
- If $x < \zero$ then $\abs{x} = \neg{x}$.
-\end{axiom}
-
-\begin{definition}\label{realsminus}
- $\realsminus = \{r \in \reals \mid r < \zero\}$.
-\end{definition}
-
-\begin{definition}\label{realsplus}
- $\realsplus = \reals \setminus \realsminus$.
-\end{definition}
-
-\begin{definition}\label{epsilon_ball}
- $\epsBall{x}{\epsilon} = \intervalopen{x-\epsilon}{x+\epsilon}$.
-\end{definition}
-
\begin{definition}\label{pointwise_convergence}
$X$ converge to $x$ iff for all $\epsilon \in \realsplus$ there exist $N \in \dom{X}$ such that for all $n \in \dom{X}$ such that $n > N$ we have $\at{X}{n} \in \epsBall{x}{\epsilon}$.
\end{definition}
@@ -120,10 +79,61 @@
Then $X$ is a sequence.
\end{proposition}
-\begin{definition}\label{higher_urysohn_chain}
+\begin{definition}\label{lifted_urysohn_chain}
$U$ is a lifted urysohnchain of $X$ iff $U$ is a sequence and $\dom{U} = \naturals$ and for all $n \in \dom{U}$ we have $\at{U}{n}$ is a urysohnchain of $X$ and $\at{U}{\suc{n}}$ is a minimal finer extention of $\at{U}{n}$ in $X$.
\end{definition}
+\begin{definition}\label{normal_ordered_urysohnchain}
+ $U$ is normal ordered iff there exist $n \in \naturals$ such that $\dom{U} = \seq{\zero}{n}$.
+\end{definition}
+
+\begin{definition}\label{bijection_of_urysohnchains}
+ $f$ is consistent on $X$ to $Y$ iff $f$ is a bijection from $\dom{X}$ to $\dom{Y}$ and for all $n,m \in \dom{X}$ such that $n < m$ we have $f(n) < f(m)$.
+\end{definition}
+
+\begin{proposition}\label{naturals_in_transitive}
+ $\naturals$ is a \in-transitive set.
+\end{proposition}
+
+\begin{proposition}\label{naturals_elem_in_transitive}
+ If $n \in \naturals$ then $n$ is \in-transitive and every element of $n$ is \in-transitive.
+ %If $n$ is a natural number then $n$ is \in-transitive and every element of $n$ is \in-transitive.
+
+\end{proposition}
+
+\begin{proposition}\label{seq_zero_to_n_isomorph_to_n}
+ For all $n \in \naturals$ we have $\seq{\zero}{n}$ has cardinality $\suc{n}$.
+\end{proposition}
+\begin{proof} [Proof by \in-induction on $n$]
+ Assume $n \in \naturals$.
+ %Assume $n$ is a natural number.
+ %We show that $\seq{\zero}{\zero}$ has cardinality $1$.
+ %\begin{subproof}
+ % It suffices to show that $1 = \seq{\zero}{\zero}$.
+ % Follows by set extensionality.
+ %\end{subproof}
+ %For all $n \in \naturals$ we have either $n = \zero$ or there exist $m \in \naturals$ such that $n = \suc{m}$.
+ %For all $n \in \naturals$ we have either $n = \zero$ or $\zero \in n$.
+ %We show that if $\seq{\zero}{n}$ has cardinality $\suc{n}$ then $\seq{\zero}{\suc{n}}$ has cardinality $\suc{\suc{n}}$.
+ %\begin{subproof}
+ % Omitted.
+ %\end{subproof}
+\end{proof}
+
+\begin{proposition}\label{existence_normal_ordered_urysohn}
+ Let $X$ be a urysohn space.
+ Suppose $U$ is a urysohnchain of $X$.
+ Suppose $\dom{U}$ is finite.
+ Then there exist $V,f$ such that $V$ is a urysohnchain of $X$ and $f$ is consistent on $X$ to $Y$ and $V$ is normal ordered.
+\end{proposition}
+\begin{proof}
+ Take $k$ such that $\dom{U}$ has cardinality $k$ by \cref{ran_converse,cardinality,finite}.
+ There exist $F$ such that $F$ is a bijection from $\seq{\zero}{k}$ to $\dom{U}$.
+
+
+\end{proof}
+
+
\begin{definition}\label{staircase}
$f$ is a staircase function adapted to $U$ in $X$ iff $U$ is a urysohnchain of $X$ and for all $x,n,m,k$ such that $k = \max{\dom{U}}$ and $n,m \in \dom{U}$ and $n$ follows $m$ in $\dom{U}$ and $x \in (\at{U}{m} \setminus \at{U}{n})$ we have $f(x)= \rfrac{m}{k}$.
\end{definition}
@@ -136,9 +146,6 @@
-
-
-
\begin{theorem}\label{urysohnsetinbeetween}
Let $X$ be a urysohn space.
Suppose $A,B \in \closeds{X}$.
@@ -159,9 +166,9 @@
There exist $U$ such that $U$ is a sequence and $\dom{U} = \naturals$ and $\at{U}{\zero} = U_0$ and for all $n \in \dom{U}$ we have $\at{U}{n}$ is a urysohnchain of $X$ and $\at{U}{\suc{n}}$ is a minimal finer extention of $\at{U}{n}$ in $X$.
\end{theorem}
\begin{proof}
- $U_0$ is a urysohnchain of $X$.
- It suffices to show that for all $V$ such that $V$ is a urysohnchain of $X$ there exist $V'$ such that $V'$ is a urysohnchain of $X$ and $V'$ is a minimal finer extention of $V$ in $X$.
-
+ %$U_0$ is a urysohnchain of $X$.
+ %It suffices to show that for all $V$ such that $V$ is a urysohnchain of $X$ there exist $V'$ such that $V'$ is a urysohnchain of $X$ and $V'$ is a minimal finer extention of $V$ in $X$.
+ Omitted.
\end{proof}
@@ -246,6 +253,9 @@
\begin{subproof}
Follows by \cref{chain_of_subsets,urysohnchain,induction_on_urysohnchains}.
\end{subproof}
+ Take $U$ such that $U$ is a lifted urysohnchain of $X$ and $\at{U}{\zero} = U_0$.
+
+