summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--library/function.tex7
1 files changed, 4 insertions, 3 deletions
diff --git a/library/function.tex b/library/function.tex
index c7f709e..2585816 100644
--- a/library/function.tex
+++ b/library/function.tex
@@ -490,7 +490,7 @@
\begin{proposition}\label{inj_circ}
Let $f\in\inj{A}{B}$.
Let $g\in\inj{B}{C}$.
- Then $g\circ f\in\surj{A}{C}$.
+ Then $g\circ f\in\inj{A}{C}$.
\end{proposition}
\begin{proof}
Omitted. % TODO
@@ -554,6 +554,7 @@
there exists $a\in\dom{f}$ such that $f(a) = b$ by \cref{fun_ran_iff}.
Fix $b\in B$.
Take $a\in A$ such that $f(a) = b$ by \cref{surj}.
+ Now $A=\dom{f}$.
\end{proof}
\begin{corollary}\label{funs_surj_iff}
@@ -618,8 +619,8 @@
\end{proposition}
\begin{proof}
$g\circ f\in\surj{A}{C}$ by \cref{bijections,surjections_circ}.
- $g\circ f$ is an injection.
- Follows by \cref{circ_rightunique,bijections}.
+ $g\circ f$ is injective by \cref{bijections,circ_injective}.
+ Follows by \cref{bijections}.
\end{proof}
\subsection{Converse as a function}