diff options
| -rw-r--r-- | library/topology/urysohntwo.tex | 55 |
1 files changed, 3 insertions, 52 deletions
diff --git a/library/topology/urysohntwo.tex b/library/topology/urysohntwo.tex index 7f69aa4..9c8eddf 100644 --- a/library/topology/urysohntwo.tex +++ b/library/topology/urysohntwo.tex @@ -281,7 +281,6 @@ % Fix $m \in \naturals$. % It suffices to show that $m \in n$. %\end{byCase} - \end{proof} @@ -467,59 +466,11 @@ Suppose $f$ is a bijection from $X$ to $Y$. Suppose $g$ is a function from $X$ to $Y$. Suppose $g$ is injective. - Suppose $X$ is finite and $Y$ is finite. + Suppose $X$ and $Y$ are finite. For all $n \in \naturals$ such that $Y$ has cardinality $n$ we have $g$ is a bijection from $X$ to $Y$. \end{lemma} -\begin{proof}[Proof by \in-induction on $n$] - Assume $n \in \naturals$. - Suppose $Y$ has cardinality $n$. - $X$ has cardinality $n$ by \cref{bijection_converse_is_bijection,bijection_circ,regularity,cardinality,foundation,emptyset}. - \begin{byCase} - \caseOf{$n = \zero$.} - Follows by \cref{converse_converse_eq,injective_converse_is_function,converse_is_relation,dom_converse,id_is_function_to,id_ran,ran_circ_exact,circ,ran_converse,emptyset_is_function_on_emptyset,bijective_converse_are_funs,relext,function_member_elim,bijection_is_function,cardinality,bijections_dom,in_irrefl,codom_of_emptyset_can_be_anything,converse_emptyset,funs_elim,neq_witness,id}. - \caseOf{$n \neq \zero$.} - %Take $n' \in n$ such that $n = \suc{n'}$. - %$n' \in \naturals$. - %$n' + 1 = n$. - %Take $y$ such that $y \in Y$ by \cref{funs_type_apply,apply,bijections_to_funs,cardinality,foundation}. - %Let $Y' = Y \setminus \{y\}$. - %$Y' \subseteq Y$. - %$Y'$ is finite. - %There exist $m \in \naturals$ such that $Y'$ has cardinality $m$. - %Take $m \in \naturals$ such that $Y'$ has cardinality $m$. - %Then $Y'$ has cardinality $n'$. - %Let $x' = \apply{\converse{f}}{y'}$. - %$x' \in X$. - %Let $X' = X \setminus \{x'\}$. - %$X' \subseteq X$. - %$X'$ is finite. - %There exist $m' \in \naturals$ such that $X'$ has cardinality $m'$. - %Take $m' \in \naturals$ such that $X''$ has cardinality $m'$. - %Then $X'$ has cardinality $n'$. - %Let $f'(z)=f(z)$ for $z \in X'$. - %$\dom{f'} = X'$. - %$\ran{f'} = Y'$. - %$f'$ is a bijection from $X'$ to $Y'$. - %Let $g'(z) = g(z)$ for $z \in X'$. - %Then $g'$ is injective. - %Then $g'$ is a bijection from $X'$ to $Y'$ by \cref{rels,id_elem_rels,times_empty_right,powerset_emptyset,double_complement_union,unions_cons,union_eq_cons,union_as_unions,unions_pow,cons_absorb,setminus_self,bijections_dom,ran_converse,id_apply,apply,unions_emptyset,img_emptyset,zero_is_empty}. - %Define $G : X \to Y$ such that $G(z)= - %\begin{cases} - % g'(z) & \text{if} z \in X' \\ - % y' & \text{if} z = x' - %\end{cases}$ - %$G = g$. - %Follows by \cref{double_relative_complement,fun_to_surj,bijections,funs_surj_iff,bijections_to_funs,neq_witness,surj,funs_elim,setminus_self,cons_subseteq_iff,cardinality,ordinal_empty_or_emptyset_elem,naturals_inductive_set,natural_number_is_ordinal_for_all,foundation,inter_eq_left_implies_subseteq,inter_emptyset,cons_subseteq_intro,emptyset_subseteq}. - Omitted. - \end{byCase} - %$\converse{f}$ is a bijection from $Y$ to $X$. - %Let $h = g \circ \converse{f}$. - %It suffices to show that $\ran{g} = Y$ by \cref{fun_to_surj,dom_converse,bijections}. - %It suffices to show that for all $y \in Y$ we have there exist $x \in X$ such that $g(x)=y$ by \cref{funs_ran,subseteq_antisymmetric,fun_ran_iff,apply,funs_elim,ran_converse,subseteq}. -% - %Fix $y \in Y$. - %Take $x \in X$ such that $\apply{\converse{f}}{y} = x$. - +\begin{proof} + Omitted. \end{proof} \begin{lemma}\label{injective_functions_is_bijection_if_bijection_there_is_other_bijection} |
