summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--library/algebra/group.tex10
-rw-r--r--library/everything.tex1
-rw-r--r--library/topology/urysohn.tex182
-rw-r--r--library/topology/urysohn2.tex183
4 files changed, 312 insertions, 64 deletions
diff --git a/library/algebra/group.tex b/library/algebra/group.tex
index a79bd2f..7de1051 100644
--- a/library/algebra/group.tex
+++ b/library/algebra/group.tex
@@ -80,3 +80,13 @@
\begin{definition}\label{group_automorphism}
Let $f$ be a function. $f$ is a group-automorphism iff $G$ is a group and $\dom{f}=G$ and $\ran{f}=G$.
\end{definition}
+
+\begin{definition}\label{trivial_group}
+ $G$ is the trivial group iff $G$ is a group and $\{\neutral[G]\}=G$.
+\end{definition}
+
+\begin{theorem}\label{trivial_implies_abelian}
+ Let $G$ be a group.
+ Suppose $G$ is the trivial group.
+ Then $G$ is an abelian group.
+\end{theorem}
diff --git a/library/everything.tex b/library/everything.tex
index b966197..94dd6d8 100644
--- a/library/everything.tex
+++ b/library/everything.tex
@@ -30,6 +30,7 @@
\import{topology/disconnection.tex}
\import{topology/separation.tex}
\import{numbers.tex}
+\import{topology/urysohn2.tex}
\begin{proposition}\label{trivial}
$x = x$.
diff --git a/library/topology/urysohn.tex b/library/topology/urysohn.tex
index b8a5fa5..17e2911 100644
--- a/library/topology/urysohn.tex
+++ b/library/topology/urysohn.tex
@@ -61,6 +61,11 @@ The first tept will be a formalisation of chain constructions.
\end{enumerate}
\end{struct}
+% Eine folge ist ein Funktion mit domain \subseteq Ordinal zahlen
+
+
+
+
\begin{definition}\label{cahin_of_subsets}
$C$ is a chain of subsets iff
$C$ is a sequence and for all $n,m \in \indexset[C]$ such that $n < m$ we have $\index[C](n) \subseteq \index[C](m)$.
@@ -100,6 +105,14 @@ The first tept will be a formalisation of chain constructions.
\subsection{staircase function}
+\begin{definition}\label{minimum}
+ $\min{X} = \{x \in X \mid \forall y \in X. x \leq y \}$.
+\end{definition}
+
+\begin{definition}\label{maximum}
+ $\max{X} = \{x \in X \mid \forall y \in X. x \geq y \}$.
+\end{definition}
+
\begin{definition}\label{intervalclosed}
$\intervalclosed{a}{b} = \{x \in \reals \mid a \leq x \leq b\}$.
\end{definition}
@@ -122,6 +135,9 @@ The first tept will be a formalisation of chain constructions.
\item \label{staircase_chain_is_in_domain} for all $x \in C$ we have $x \subseteq \dom{f}$.
\item \label{staircase_behavoir_index_zero} $f(\index[C](1))= 1$.
\item \label{staircase_behavoir_index_n} $f(\dom{f}\setminus \unions{C}) = \zero$.
+ \item \label{staircase_chain_indeset} There exist $n$ such that $\indexset[C] = \seq{\zero}{n}$.
+ \item \label{staircase_behavoir_index_arbetrray} for all $n \in \indexset[C]$
+ such that $n \neq \zero$ we have $f(\index[C](n) \setminus \index[C](n-1)) = \rfrac{n}{ \max{\indexset[C]} }$.
\end{enumerate}
\end{struct}
@@ -220,6 +236,52 @@ The first tept will be a formalisation of chain constructions.
$\pot(n) = \apply{\pot}{n}$.
\end{abbreviation}
+%Take all points, besids one but then take all open sets not containing x but all other, so \{x\} has to be closed
+\begin{axiom}\label{hausdorff_implies_singltons_closed}
+ For all $X$ such that $X$ is Hausdorff we have
+ for all $x \in \carrier[X]$ we have $\{x\}$ is closed in $X$.
+\end{axiom}
+
+
+\begin{lemma}\label{urysohn_set_in_between}
+ Let $X$ be a urysohn space.
+ Suppose $A,B \in \closeds{X}$.
+ Suppose $A \subset B$.
+ %Suppose $B \union A \neq \carrier[X]$.
+ There exist $C \in \closeds{X}$
+ such that $A \subset C \subset B$ or $A, B \in \opens[X]$.
+\end{lemma}
+\begin{proof}
+ We have $B \setminus A$ is inhabited.
+ Take $x$ such that $x \in (B \setminus A)$.
+ Then $A \subset (A \union \{x\})$.
+ Let $C = \closure{A \union \{x\}}{X}$.
+ We have $(A \union \{x\}) \subseteq \closure{A \union \{x\}}{X}$.
+ Therefore $A \subset C$.
+ $A \subseteq B \subseteq \carrier[X]$.
+ $x \in B$.
+ Therefore $x \in \carrier[X]$.
+ $(A \union \{x\}) \subseteq \carrier[X]$.
+ We have $\closure{A \union \{x\}}{X}$ is closed in $X$ by \cref{closure_is_closed}.
+ Therefore $C$ is closed in $X$ by \cref{closure_is_closed}.
+ \begin{byCase}
+ \caseOf{$C = B$.}
+ %We have $\carrier[X] \setminus A$ is open in $X$.
+ %We have $\carrier[X] \setminus B$ is open in $X$.
+ %$\{x\}$ is closed in $X$.% by \cref{hausdorff_implies_singltons_closed}.
+ %$A \union \{x\} = C$.
+ %$\carrier[X] \setminus (A \union \{x\}) = (\carrier[X] \setminus C)$.
+ %$\carrier[X] \setminus (A) = \{x\} \union (\carrier[X] \setminus C)$.
+
+
+ %Therefore $\{x\}$ is open in $X$.
+ Omitted.
+ \caseOf{$C \neq B$.}
+ Omitted.
+ \end{byCase}
+
+\end{proof}
+
\begin{proposition}\label{urysohnchain_induction_begin}
Let $X$ be a urysohn space.
@@ -311,13 +373,7 @@ The first tept will be a formalisation of chain constructions.
Omitted.
\end{proof}
-\begin{definition}\label{minimum}
- $\min{X} = \{x \in X \mid \forall y \in X. x \leq y \}$.
-\end{definition}
-\begin{definition}\label{maximum}
- $\max{X} = \{x \in X \mid \forall y \in X. x \geq y \}$.
-\end{definition}
\begin{proposition}\label{urysohnchain_induction_step_existence}
Let $X$ be a urysohn space.
@@ -562,6 +618,16 @@ The first tept will be a formalisation of chain constructions.
Omitted.
\end{subproof}
+ Let $\alpha = \carrier[X]$.
+ %Define $f : \alpha \to \naturals$ such that $f(x) =$
+ %\begin{cases}
+ % & 1 & \text{if} x \in A \lor x \in B
+ % & k & \text{if} \exists k \in \naturals
+ %\end{cases}
+%
+ %We show that there exist $k \in \funs{\carrier[X]}{\reals}$ such that
+ %$k(x)$
+
%For all $n \in \naturals$ we have $\index[\zeta](n)$ is a urysohnchain in $X$.
We show that for all $n \in \indexset[\zeta]$ we have $\index[\zeta](n)$ has cardinality $\pot(n)$.
@@ -581,14 +647,19 @@ The first tept will be a formalisation of chain constructions.
We show that for all $m \in \indexset[\zeta]$ we have there exist $f$ such that $f \in \funs{\carrier[X]}{\intervalclosed{\zero}{1}}$
- and for all $n \in \indexset[\index[\zeta](m)]$ we have for all $x \in \index[\index[\zeta](m)](n)$
+ and for all $n \in \indexset[\index[\zeta](m)]$ we have for all $x \in \index[\index[\zeta](m)](n)$ such that $x \notin \index[\index[\zeta](m)](n-1)$
we have $f(x) = \rfrac{n}{\pot(m)}$.
\begin{subproof}
- % Fix $m \in \indexset[\zeta]$.
- % $\index[\zeta](m)$ is a urysohnchain in $X$.
- %
- % Follows by \cref{existence_of_staircase_function}.
-
+ Fix $m \in \indexset[\zeta]$.
+ %$\index[\zeta](m)$ is a urysohnchain in $X$.
+
+ %Define $o : \alpha \to \intervalclosed{\zero}{1}$ such that $o(x) =$
+ %\begin{cases}
+ % & 0 & \text{if} x \in A
+ % & 1 & \text{if} x \in B
+ % & \rfrac{n}{m} & \text{if} \exists n \in \naturals. x \in \index[\index[\zeta](m)](n) \land x \notin \index[\index[\zeta](m)](n-1)
+ %\end{cases}
+%
Omitted.
\end{subproof}
@@ -658,6 +729,7 @@ The first tept will be a formalisation of chain constructions.
\begin{subproof}
Fix $n \in \naturals$.
Fix $x \in \carrier[X]$.
+ Omitted.
\end{subproof}
@@ -677,11 +749,12 @@ The first tept will be a formalisation of chain constructions.
\begin{subproof}
Fix $x \in \carrier[X]$.
-
+ Omitted.
% Contradiction by \cref{two_in_naturals,function_apply_default,reals_axiom_zero_in_reals,dom_emptyset,notin_emptyset,funs_type_apply,neg,minus,abs_behavior1}.
%Follows by \cref{two_in_naturals,function_apply_default,reals_axiom_zero_in_reals,dom_emptyset,notin_emptyset,funs_type_apply,neg,minus,abs_behavior1}.
\end{subproof}
+ Omitted.
\end{subproof}
@@ -690,51 +763,54 @@ The first tept will be a formalisation of chain constructions.
We show that for all $x \in \dom{G}$ we have $G(x) \in \reals$.
\begin{subproof}
- Fix $x \in \dom{G}$.
- It suffices to show that $g(x) \in \reals$.
-
- There exist $k \in \reals$ such that for all $\epsilon \in \reals$ such that $\epsilon > \zero$ we have there exist $N \in \naturals$ such that for all $N' \in \naturals$ such that $N' > N$ we have $\abs{\apply{\gamma(N')}{x} - k} < \epsilon$.
-
- We show that for all $\epsilon \in \reals$ such that $\epsilon > \zero$ we have there exist $N \in \naturals$ such that for all $N' \in \naturals$ such that $N' > N$ we have $\abs{\apply{\gamma(N')}{x} - g(x)} < \epsilon$ and $g(x)= k$.
- \begin{subproof}
- Fix $\epsilon \in \reals$.
-
-
- \end{subproof}
- Follows by \cref{apply,plus_one_order,ordinal_iff_suc_ordinal,natural_number_is_ordinal,subseteq,naturals_subseteq_reals,naturals_is_equal_to_two_times_naturals,reals_one_bigger_zero,one_in_reals,ordinal_prec_trichotomy,omega_is_an_ordinal,suc_intro_self,two_in_naturals,in_asymmetric,suc}.
+ %Fix $x \in \dom{G}$.
+ %It suffices to show that $g(x) \in \reals$.
+%
+ %There exist $k \in \reals$ such that for all $\epsilon \in \reals$ such that $\epsilon > \zero$ we have there exist $N \in \naturals$ such that for all $N' \in \naturals$ such that $N' > N$ we have $\abs{\apply{\gamma(N')}{x} - k} < \epsilon$.
+%
+ %We show that for all $\epsilon \in \reals$ such that $\epsilon > \zero$ we have there exist $N \in \naturals$ such that for all $N' \in \naturals$ such that $N' > N$ we have $\abs{\apply{\gamma(N')}{x} - g(x)} < \epsilon$ and $g(x)= k$.
+ %\begin{subproof}
+ % Fix $\epsilon \in \reals$.
+ %
+%
+ %\end{subproof}
+ %Follows by \cref{apply,plus_one_order,ordinal_iff_suc_ordinal,natural_number_is_ordinal,subseteq,naturals_subseteq_reals,naturals_is_equal_to_two_times_naturals,reals_one_bigger_zero,one_in_reals,ordinal_prec_trichotomy,omega_is_an_ordinal,suc_intro_self,two_in_naturals,in_asymmetric,suc}.
+ Omitted.
\end{subproof}
We show that for all $x \in \dom{G}$ we have $\zero \leq G(x) \leq 1$.
\begin{subproof}
- Fix $x \in \dom{G}$.
- Then $x \in \carrier[X]$.
- \begin{byCase}
- \caseOf{$x \in A$.}
- For all $n \in \naturals$ we have $\apply{\gamma(n)}{x} = \zero$.
-
-
- \caseOf{$x \notin A$.}
- \begin{byCase}
- \caseOf{$x \in B$.}
- For all $n \in \naturals$ we have $\apply{\gamma(n)}{x} = 1$.
-
- \caseOf{$x \notin B$.}
- Omitted.
- \end{byCase}
- \end{byCase}
+ %Fix $x \in \dom{G}$.
+ %Then $x \in \carrier[X]$.
+ %\begin{byCase}
+ % \caseOf{$x \in A$.}
+ % For all $n \in \naturals$ we have $\apply{\gamma(n)}{x} = \zero$.
+%
+%
+ % \caseOf{$x \notin A$.}
+ % \begin{byCase}
+ % \caseOf{$x \in B$.}
+ % For all $n \in \naturals$ we have $\apply{\gamma(n)}{x} = 1$.
+%
+ % \caseOf{$x \notin B$.}
+ % Omitted.
+ % \end{byCase}
+ %\end{byCase}
+ Omitted.
\end{subproof}
We show that $G \in \funs{\carrier[X]}{\intervalclosed{\zero}{1}}$.
\begin{subproof}
- It suffices to show that $\ran{G} \subseteq \intervalclosed{\zero}{1}$ by \cref{fun_ran_iff,funs_intro,funs_weaken_codom}.
- It suffices to show that for all $x \in \dom{G}$ we have $G(x) \in \intervalclosed{\zero}{1}$.
- Fix $x \in \dom{G}$.
- Then $x \in \carrier[X]$.
- $g(x) = G(x)$.
- We have $G(x) \in \reals$.
- $\zero \leq G(x) \leq 1$.
- We have $G(x) \in \intervalclosed{\zero}{1}$ .
+ %It suffices to show that $\ran{G} \subseteq \intervalclosed{\zero}{1}$ by \cref{fun_ran_iff,funs_intro,funs_weaken_codom}.
+ %It suffices to show that for all $x \in \dom{G}$ we have $G(x) \in \intervalclosed{\zero}{1}$.
+ %Fix $x \in \dom{G}$.
+ %Then $x \in \carrier[X]$.
+ %$g(x) = G(x)$.
+ %We have $G(x) \in \reals$.
+ %$\zero \leq G(x) \leq 1$.
+ %We have $G(x) \in \intervalclosed{\zero}{1}$ .
+ Omitted.
\end{subproof}
We show that $G(A) = \zero$.
@@ -841,7 +917,7 @@ The first tept will be a formalisation of chain constructions.
% Omitted.
% \end{subproof}
\end{proof}
-
-\begin{theorem}\label{safe}
- Contradiction.
-\end{theorem}
+%
+%\begin{theorem}\label{safe}
+% Contradiction.
+%\end{theorem}
diff --git a/library/topology/urysohn2.tex b/library/topology/urysohn2.tex
index ea49a6c..c0b46c4 100644
--- a/library/topology/urysohn2.tex
+++ b/library/topology/urysohn2.tex
@@ -15,6 +15,34 @@
\section{Urysohns Lemma}
+\begin{definition}\label{minimum}
+ $\min{X} = \{x \in X \mid \forall y \in X. x \leq y \}$.
+\end{definition}
+
+
+\begin{definition}\label{maximum}
+ $\max{X} = \{x \in X \mid \forall y \in X. x \geq y \}$.
+\end{definition}
+
+
+\begin{definition}\label{intervalclosed}
+ $\intervalclosed{a}{b} = \{x \in \reals \mid a \leq x \leq b\}$.
+\end{definition}
+
+
+\begin{definition}\label{intervalopen}
+ $\intervalopen{a}{b} = \{ x \in \reals \mid a < x < b\}$.
+\end{definition}
+
+
+\begin{definition}\label{one_to_n_set}
+ $\seq{m}{n} = \{x \in \naturals \mid m \leq x \leq n\}$.
+\end{definition}
+
+
+\begin{definition}\label{sequence}
+ $X$ is a sequence iff $X$ is a function and $\dom{X} \subseteq \naturals$.
+\end{definition}
\begin{abbreviation}\label{urysohnspace}
@@ -26,13 +54,81 @@
\end{abbreviation}
-\begin{definition}\label{intervalclosed}
- $\intervalclosed{a}{b} = \{x \in \reals \mid a \leq x \leq b\}$.
+\begin{abbreviation}\label{at}
+ $\at{f}{n} = f(n)$.
+\end{abbreviation}
+
+
+\begin{definition}\label{chain_of_subsets}
+ $X$ is a chain of subsets in $Y$ iff $X$ is a sequence and for all $n \in \dom{X}$ we have $\at{X}{n} \subseteq \carrier[Y]$ and for all $m \in \dom{X}$ such that $m > n$ we have $\at{X}{n} \subseteq \at{X}{m}$.
+\end{definition}
+
+
+\begin{definition}\label{urysohnchain}%<-- zulässig
+ $X$ is a urysohnchain of $Y$ iff $X$ is a chain of subsets in $Y$ and for all $n,m \in \dom{X}$ such that $n < m$ we have $\closure{\at{X}{n}}{Y} \subseteq \interior{\at{X}{m}}{Y}$.
+\end{definition}
+
+
+\begin{definition}\label{finer} %<-- verfeinerung
+ $X$ is finer then $Y$ in $U$ iff for all $n \in \dom{X}$ we have $\at{X}{n} \in \ran{Y}$ and for all $m \in \dom{X}$ such that $n < m$ we have there exist $k \in \dom{Y}$ such that $ \closure{\at{X}{n}}{U} \subseteq \interior{\at{Y}{k}}{U} \subseteq \closure{\at{Y}{k}}{U} \subseteq \interior{\at{X}{m}}{U}$.
+\end{definition}
+
+
+\begin{definition}\label{sequence_of_reals}
+ $X$ is a sequence of reals iff $\ran{X} \subseteq \reals$.
+\end{definition}
+
+
+\begin{axiom}\label{abs_behavior1}
+ If $x \geq \zero$ then $\abs{x} = x$.
+\end{axiom}
+
+\begin{axiom}\label{abs_behavior2}
+ If $x < \zero$ then $\abs{x} = \neg{x}$.
+\end{axiom}
+
+\begin{definition}\label{realsminus}
+ $\realsminus = \{r \in \reals \mid r < \zero\}$.
+\end{definition}
+
+\begin{definition}\label{realsplus}
+ $\realsplus = \reals \setminus \realsminus$.
+\end{definition}
+
+\begin{definition}\label{epsilon_ball}
+ $\epsBall{x}{\epsilon} = \intervalopen{x-\epsilon}{x+\epsilon}$.
\end{definition}
+\begin{definition}\label{pointwise_convergence}
+ $X$ converge to $x$ iff for all $\epsilon \in \realsplus$ there exist $N \in \dom{X}$ such that for all $n \in \dom{X}$ such that $n > N$ we have $\at{X}{n} \in \epsBall{x}{\epsilon}$.
+\end{definition}
+
+
+\begin{proposition}\label{iff_sequence}
+ Suppose $X$ is a function.
+ Suppose $\dom{X} \subseteq \naturals$.
+ Then $X$ is a sequence.
+\end{proposition}
+
+
+
+
+
+\begin{theorem}\label{urysohnsetinbeetween}
+ Let $X$ be a urysohn space.
+ Suppose $A,B \in \closeds{X}$.
+ Suppose $\closure{A}{X} \subseteq \interior{B}{X}$.
+ Suppose $\carrier[X]$ is inhabited.
+ There exist $U \subseteq \carrier[X]$ such that $U$ is closed in $X$ and $\closure{A}{X} \subseteq \interior{U}{X} \subseteq \closure{U}{X} \subseteq \interior{B}{X}$.
+\end{theorem}
+\begin{proof}
+ Omitted.
+\end{proof}
+
+
\begin{theorem}\label{urysohn}
Let $X$ be a urysohn space.
Suppose $A,B \in \closeds{X}$.
@@ -42,21 +138,86 @@
and $f(A) = \zero$ and $f(B)= 1$ and $f$ is continuous.
\end{theorem}
\begin{proof}
-
-
- Define $f : X \to \reals$ such that $f(x) = $
+ Let $X' = \carrier[X]$.
+ Let $N = \{\zero, 1\}$.
+ $1 = \suc{\zero}$.
+ $1 \in \naturals$ and $\zero \in \naturals$.
+ $N \subseteq \naturals$.
+ Let $A' = (X' \setminus B)$.
+ $B \subseteq X'$ by \cref{powerset_elim,closeds}.
+ $A \subseteq X'$.
+ Therefore $A \subseteq A'$.
+ Define $U_0: N \to \{A, A'\}$ such that $U_0(n) =$
\begin{cases}
- &(x + k) &\text{if} x \in X \land k \in \naturals
- & x &\text{if} x \neq \zero
- & \zero & \text{if} x = \zero
- % & x ,x \in X <- will result in technicly ambigus parse
+ &A &\text{if} n = \zero \\
+ &A' &\text{if} n = 1
\end{cases}
+ $U_0$ is a function.
+ $\dom{U_0} = N$.
+ $\dom{U_0} \subseteq \naturals$ by \cref{ran_converse}.
+ $U_0$ is a sequence.
+ We have $1, \zero \in N$.
+ We show that $U_0$ is a chain of subsets in $X$.
+ \begin{subproof}
+ We have $\dom{U_0} \subseteq \naturals$.
+ We have for all $n \in \dom{U_0}$ we have $\at{U_0}{n} \subseteq \carrier[X]$ by \cref{topological_prebasis_iff_covering_family,union_as_unions,union_absorb_subseteq_left,subset_transitive,setminus_subseteq}.
+ We have $\dom{U_0} = \{\zero, 1\}$.
+
+ It suffices to show that for all $n \in \dom{U_0}$ we have for all $m \in \dom{U_0}$ such that $m > n$ we have $\at{U_0}{n} \subseteq \at{U_0}{m}$.
+
+ Fix $n \in \dom{U_0}$.
+ Fix $m \in \dom{U_0}$.
+
+ \begin{byCase}
+ \caseOf{$n \neq \zero$.}
+ Trivial.
+ \caseOf{$n = \zero$.}
+ \begin{byCase}
+ \caseOf{$m = \zero$.}
+ Trivial.
+ \caseOf{$m \neq \zero$.}
+ We have $A \subseteq A'$.
+ We have $\at{U_0}{\zero} = A$ by assumption.
+ We have $\at{U_0}{1}= A'$ by assumption.
+ \end{byCase}
+ \end{byCase}
+
+ \end{subproof}
+ $U_0$ is a urysohnchain of $X$.
+
+ %We are done with the first step, now we want to prove that we have U a sequence of these chain with U_0 the first chain.
+
+
- Trivial.
-
\end{proof}
\begin{theorem}\label{safe}
Contradiction.
\end{theorem}
+
+
+
+
+
+%
+%Ideen:
+%Eine folge ist ein Funktion mit domain \subseteq Natürlichenzahlen. als predicat
+%
+%zulässig und verfeinerung von ketten als predicat definieren.
+%
+%limits und punkt konvergenz als prädikat.
+%
+%
+%Vor dem Beweis vor dem eigentlichen Beweis.
+%die abgeleiteten Funktionen
+%
+%\derivedstiarcasefunction on A
+%
+%abbreviation: \at{f}{n} = f_{n}
+%
+%
+%TODO:
+%Reals ist ein topologischer Raum
+%
+