summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--library/numbers.tex177
-rw-r--r--library/ordinal.tex107
2 files changed, 195 insertions, 89 deletions
diff --git a/library/numbers.tex b/library/numbers.tex
index 4b5d10b..b83827a 100644
--- a/library/numbers.tex
+++ b/library/numbers.tex
@@ -1,6 +1,7 @@
\import{order/order.tex}
\import{relation.tex}
\import{set/suc.tex}
+\import{ordinal.tex}
\section{The real numbers}
@@ -75,24 +76,17 @@
$\suc{\zero} = 1$.
\end{axiom}
-\begin{definition}\label{naturals}
- $\naturals = \{ x \in \reals \mid \exists y \in \reals. \suc{y} = x \lor x = \zero \}$.
-\end{definition}
-
-\begin{lemma}\label{naturals_subseteq_reals}
+\begin{axiom}\label{naturals_subseteq_reals}
$\naturals \subseteq \reals$.
-\end{lemma}
+\end{axiom}
-%\begin{inductive}\label{naturals_subset_reals}
-% Define $\naturals \subseteq \reals$ inductively as follows.
-% \begin{enumerate}
-% \item $\zero \in \naturals$.
-% \item If $n\in \naturals$, then $\suc{n} \in \naturals$. %Naproche translate this to for all n \in R \suc{n} \in R we want something like the definition before.
-% \end{enumerate}
-%\end{inductive}
+\begin{axiom}\label{naturals_inductive_set}
+ $\naturals$ is an inductive set.
+\end{axiom}
-\begin{axiom}\label{suc_eq_plus_one}
- For all $n \in \naturals$ we have $\suc{n} = n + 1$.
+\begin{axiom}\label{naturals_smallest_inductive_set}
+ Let $A$ be an inductive set.
+ Then $\naturals\subseteq A$.
\end{axiom}
\begin{abbreviation}\label{is_a_natural_number}
@@ -119,33 +113,147 @@
If $x$ is a natural number and $y$ is a natural number then $x+y$ is a natural number.
\end{axiom}
+\subsubsection{Natural numbers as ordinals}
-\subsubsection{Properties and Facts natural numbers}
-\begin{proposition}\label{naturals_kommu}
- For all $n,m \in \naturals$ we have $n + m = m + n$.
-\end{proposition}
+\begin{lemma}\label{nat_is_successor_ordinal}
+ Let $n\in\naturals$.
+ Suppose $n\neq \emptyset$.
+ Then $n$ is a successor ordinal.
+\end{lemma}
\begin{proof}
- \begin{byCase}
- \caseOf{$n = \emptyset$.} Trivial.
- \caseOf{$m = \emptyset$.} Trivial.
- \caseOf{$n \neq \emptyset \land m \neq \emptyset$.} Omitted.
- \end{byCase}
+ Let $M = \{ m\in \naturals \mid\text{$m = \emptyset$ or $m$ is a successor ordinal}\}$.
+ $M$ is an inductive set by \cref{suc_ordinal,naturals_inductive_set,successor_ordinal,emptyset_is_ordinal}.
+ Now $M\subseteq \naturals\subseteq M$
+ by \cref{subseteq,naturals_smallest_inductive_set}.
+ Thus $M = \naturals$.
+ Follows by \cref{subseteq}.
\end{proof}
-
+\begin{lemma}\label{nat_is_transitiveset}
+ $\naturals$ is \in-transitive.
+\end{lemma}
+\begin{proof}
+ Let $M = \{ m\in\naturals \mid \text{for all $n\in m$ we have $n\in\naturals$} \}$.
+ $\emptyset\in M$.
+ For all $n\in M$ we have $\suc{n}\in M$
+ by \cref{naturals_inductive_set,suc}.
+ Thus $M$ is an inductive set.
+ Now $M\subseteq \naturals\subseteq M$
+ by \cref{subseteq,naturals_smallest_inductive_set}.
+ Hence $\naturals = M$.
+\end{proof}
-\begin{lemma}\label{naturals_inductive_set}
- $\naturals$ is an inductive set.
+\begin{lemma}\label{natural_number_is_ordinal}
+ Every natural number is an ordinal.
\end{lemma}
+\begin{proof}
+ Follows by \cref{suc_ordinal,suc_neq_emptyset,naturals_inductive_set,nat_is_successor_ordinal,successor_ordinal,suc_ordinal_implies_ordinal}.
+\end{proof}
+\begin{lemma}\label{omega_is_an_ordinal}
+ $\naturals$ is an ordinal.
+\end{lemma}
+\begin{proof}
+ Follows by \cref{natural_number_is_ordinal,transitive_set_of_ordinals_is_ordinal,nat_is_transitiveset}.
+\end{proof}
-\begin{lemma}\label{naturals_smallest_inductive_set}
- Let $A$ be an inductive set.
- Then $\naturals\subseteq A$.
+\begin{lemma}\label{omega_is_a_limit_ordinal}
+ $\naturals$ is a limit ordinal.
\end{lemma}
+\begin{proof}
+ $\emptyset\precedes \naturals$.
+ If $n\in \naturals$, then $\suc{n}\in\naturals$.
+\end{proof}
+\subsubsection{Properties and Facts natural numbers}
+
+\begin{theorem}\label{induction_principle}
+ Let $P$ be a set.
+ Suppose $P \subseteq \naturals$.
+ Suppose $\zero \in P$.
+ Suppose $\forall n \in P. \suc{n} \in P$.
+ Then $P = \naturals$.
+\end{theorem}
+\begin{proof}
+ Trivial.
+\end{proof}
+
+\begin{proposition}\label{existence_of_suc}
+ Let $n \in \naturals$.
+ Suppose $n \neq \zero$.
+ Then there exist $n' \in \naturals$ such that $\suc{n'} = n$.
+\end{proposition}
+\begin{proof}
+ Follows by \cref{transitiveset,nat_is_transitiveset,suc_intro_self,successor_ordinal,nat_is_successor_ordinal}.
+\end{proof}
+
+\begin{proposition}\label{suc_eq_plus_one}
+ Let $n \in \naturals$.
+ Then $\suc{n} = n + 1$.
+\end{proposition}
+\begin{proof}
+ Let $P = \{ n \in \naturals \mid n + 1 = 1 + n \}$.
+ $\zero \in P$.
+ It suffices to show that if $m \in P$ then $\suc{m} \in P$.
+\end{proof}
+
+\begin{proposition}\label{naturals_1_kommu}
+ Let $n \in \naturals$.
+ Then $1 + n = n + 1$.
+\end{proposition}
+
+\begin{proposition}\label{naturals_add_kommu}
+ For all $n \in \naturals$ we have for all $m\in \naturals$ we have $n + m = m + n$.
+\end{proposition}
+\begin{proof}
+ Fix $n \in \naturals$.
+ Let $P = \{ m \in \naturals \mid m + n = n + m \}$.
+ It suffices to show that $P = \naturals$.
+ $P \subseteq \naturals$.
+ $\zero \in P$.
+ It suffices to show that if $m \in P$ then $\suc{m} \in P$.
+\end{proof}
+
+\begin{proposition}\label{naturals_add_assoc}
+ Suppose $n,m,k \in \naturals$.
+ Then $n + (m + k) = (n + m) + k$.
+\end{proposition}
+\begin{proof}
+ Let $P = \{ k \in \naturals \mid \text{for all $n',m' \in \naturals$ we have $n' + (m' + k) = (n' + m') + k$}\}$.
+ $P \subseteq \naturals$.
+ We show that $P = \naturals$.
+ \begin{subproof}
+ $\zero \in P$.
+ It suffices to show that for all $k \in P$ we have $\suc{k} \in P$.
+ Fix $k \in P$.
+ \begin{align*}
+ (n + m) + \suc{k} \\
+ &= \suc{(n+m) + k} \\
+ &= \suc{n + (m + k)} \\
+ &= n + \suc{(m + k)} \\
+ &= n + (m + \suc{k})
+ \end{align*}
+ For all $n,m \in \naturals$ we have $(n + m) + \suc{k} = n + (m + \suc{k})$.
+ \end{subproof}
+\end{proof}
+
+\begin{proposition}\label{naturals_rmul_one}
+ For all $n \in \naturals$ we have $n \rmul 1 = n$.
+\end{proposition}
+
+
+\begin{proposition}\label{naturals_mul_kommu}
+ Let $n, m \in \naturals$.
+ Then $n \rmul m = m \rmul n$.
+\end{proposition}
+
+\begin{proposition}\label{naturals_rmul_assoc}
+ Suppose $n,m,k \in \naturals$.
+ Then $n \rmul (m \rmul k) = (n \rmul m) \rmul k$.
+\end{proposition}
+
\begin{lemma}\label{naturals_is_equal_to_two_times_naturals}
$\{x+y \mid x \in \naturals, y \in \naturals \} = \naturals$.
\end{lemma}
@@ -153,9 +261,6 @@
Omitted.
\end{proof}
-%\begin{lemma}\label{oeder_on_naturals}
-% $\lt[\reals] \inter (\naturals \times \naturals)$ is an order on $\naturals$.
-%\end{lemma}
@@ -387,9 +492,9 @@
-%\begin{proposition}\label{safe}
-% Contradiction.
-%\end{proposition}
+\begin{proposition}\label{safe}
+ Contradiction.
+\end{proposition}
\section{The integers}
diff --git a/library/ordinal.tex b/library/ordinal.tex
index 3063162..6f924c1 100644
--- a/library/ordinal.tex
+++ b/library/ordinal.tex
@@ -3,7 +3,7 @@
\import{set/powerset.tex}
\import{set/regularity.tex}
\import{set/suc.tex}
-\import{nat.tex}
+%\import{nat.tex}
\section{Transitive sets}
@@ -584,55 +584,56 @@ Then $\alpha\subseteq\beta$.
Follows by \cref{subseteq_antisymmetric}.
\end{proof}
-
-\subsection{Natural numbers as ordinals}
-
-\begin{lemma}\label{nat_is_successor_ordinal}
- Let $n\in\naturals$.
- Suppose $n\neq \emptyset$.
- Then $n$ is a successor ordinal.
-\end{lemma}
-\begin{proof}
- Let $M = \{ m\in \naturals \mid\text{$m = \emptyset$ or $m$ is a successor ordinal}\}$.
- $M$ is an inductive set by \cref{suc_ordinal,naturals_inductive_set,successor_ordinal,emptyset_is_ordinal}.
- Now $M\subseteq \naturals\subseteq M$
- by \cref{subseteq,naturals_smallest_inductive_set}.
- Thus $M = \naturals$.
- Follows by \cref{subseteq}.
-\end{proof}
-
-\begin{lemma}\label{nat_is_transitiveset}
- $\naturals$ is \in-transitive.
-\end{lemma}
-\begin{proof}
- Let $M = \{ m\in\naturals \mid \text{for all $n\in m$ we have $n\in\naturals$} \}$.
- $\emptyset\in M$.
- For all $n\in M$ we have $\suc{n}\in M$
- by \cref{naturals_inductive_set,suc}.
- Thus $M$ is an inductive set.
- Now $M\subseteq \naturals\subseteq M$
- by \cref{subseteq,naturals_smallest_inductive_set}.
- Hence $\naturals = M$.
-\end{proof}
-
-\begin{lemma}\label{natural_number_is_ordinal}
- Every natural number is an ordinal.
-\end{lemma}
-\begin{proof}
- Follows by \cref{suc_ordinal,suc_neq_emptyset,naturals_inductive_set,nat_is_successor_ordinal,successor_ordinal,suc_ordinal_implies_ordinal}.
-\end{proof}
-
-\begin{lemma}\label{omega_is_an_ordinal}
- $\naturals$ is an ordinal.
-\end{lemma}
-\begin{proof}
- Follows by \cref{natural_number_is_ordinal,transitive_set_of_ordinals_is_ordinal,nat_is_transitiveset}.
-\end{proof}
-
-\begin{lemma}\label{omega_is_a_limit_ordinal}
- $\naturals$ is a limit ordinal.
-\end{lemma}
-\begin{proof}
- $\emptyset\precedes \naturals$.
- If $n\in \naturals$, then $\suc{n}\in\naturals$.
-\end{proof}
+%
+%\subsection{Natural numbers as ordinals}
+%
+%\begin{lemma}\label{nat_is_successor_ordinal}
+% Let $n\in\naturals$.
+% Suppose $n\neq \emptyset$.
+% Then $n$ is a successor ordinal.
+%\end{lemma}
+%\begin{proof}
+% Let $M = \{ m\in \naturals \mid\text{$m = \emptyset$ or $m$ is a successor ordinal}\}$.
+% $M$ is an inductive set by \cref{suc_ordinal,naturals_inductive_set,successor_ordinal,emptyset_is_ordinal}.
+% Now $M\subseteq \naturals\subseteq M$
+% by \cref{subseteq,naturals_smallest_inductive_set}.
+% Thus $M = \naturals$.
+% Follows by \cref{subseteq}.
+%\end{proof}
+%
+%\begin{lemma}\label{nat_is_transitiveset}
+% $\naturals$ is \in-transitive.
+%\end{lemma}
+%\begin{proof}
+% Let $M = \{ m\in\naturals \mid \text{for all $n\in m$ we have $n\in\naturals$} \}$.
+% $\emptyset\in M$.
+% For all $n\in M$ we have $\suc{n}\in M$
+% by \cref{naturals_inductive_set,suc}.
+% Thus $M$ is an inductive set.
+% Now $M\subseteq \naturals\subseteq M$
+% by \cref{subseteq,naturals_smallest_inductive_set}.
+% Hence $\naturals = M$.
+%\end{proof}
+%
+%\begin{lemma}\label{natural_number_is_ordinal}
+% Every natural number is an ordinal.
+%\end{lemma}
+%\begin{proof}
+% Follows by \cref{suc_ordinal,suc_neq_emptyset,naturals_inductive_set,nat_is_successor_ordinal,successor_ordinal,suc_ordinal_implies_ordinal}.
+%\end{proof}
+%
+%\begin{lemma}\label{omega_is_an_ordinal}
+% $\naturals$ is an ordinal.
+%\end{lemma}
+%\begin{proof}
+% Follows by \cref{natural_number_is_ordinal,transitive_set_of_ordinals_is_ordinal,nat_is_transitiveset}.
+%\end{proof}
+%
+%\begin{lemma}\label{omega_is_a_limit_ordinal}
+% $\naturals$ is a limit ordinal.
+%\end{lemma}
+%\begin{proof}
+% $\emptyset\precedes \naturals$.
+% If $n\in \naturals$, then $\suc{n}\in\naturals$.
+%\end{proof}
+% \ No newline at end of file