diff options
| -rw-r--r-- | library/numbers.tex | 177 | ||||
| -rw-r--r-- | library/ordinal.tex | 107 |
2 files changed, 195 insertions, 89 deletions
diff --git a/library/numbers.tex b/library/numbers.tex index 4b5d10b..b83827a 100644 --- a/library/numbers.tex +++ b/library/numbers.tex @@ -1,6 +1,7 @@ \import{order/order.tex} \import{relation.tex} \import{set/suc.tex} +\import{ordinal.tex} \section{The real numbers} @@ -75,24 +76,17 @@ $\suc{\zero} = 1$. \end{axiom} -\begin{definition}\label{naturals} - $\naturals = \{ x \in \reals \mid \exists y \in \reals. \suc{y} = x \lor x = \zero \}$. -\end{definition} - -\begin{lemma}\label{naturals_subseteq_reals} +\begin{axiom}\label{naturals_subseteq_reals} $\naturals \subseteq \reals$. -\end{lemma} +\end{axiom} -%\begin{inductive}\label{naturals_subset_reals} -% Define $\naturals \subseteq \reals$ inductively as follows. -% \begin{enumerate} -% \item $\zero \in \naturals$. -% \item If $n\in \naturals$, then $\suc{n} \in \naturals$. %Naproche translate this to for all n \in R \suc{n} \in R we want something like the definition before. -% \end{enumerate} -%\end{inductive} +\begin{axiom}\label{naturals_inductive_set} + $\naturals$ is an inductive set. +\end{axiom} -\begin{axiom}\label{suc_eq_plus_one} - For all $n \in \naturals$ we have $\suc{n} = n + 1$. +\begin{axiom}\label{naturals_smallest_inductive_set} + Let $A$ be an inductive set. + Then $\naturals\subseteq A$. \end{axiom} \begin{abbreviation}\label{is_a_natural_number} @@ -119,33 +113,147 @@ If $x$ is a natural number and $y$ is a natural number then $x+y$ is a natural number. \end{axiom} +\subsubsection{Natural numbers as ordinals} -\subsubsection{Properties and Facts natural numbers} -\begin{proposition}\label{naturals_kommu} - For all $n,m \in \naturals$ we have $n + m = m + n$. -\end{proposition} +\begin{lemma}\label{nat_is_successor_ordinal} + Let $n\in\naturals$. + Suppose $n\neq \emptyset$. + Then $n$ is a successor ordinal. +\end{lemma} \begin{proof} - \begin{byCase} - \caseOf{$n = \emptyset$.} Trivial. - \caseOf{$m = \emptyset$.} Trivial. - \caseOf{$n \neq \emptyset \land m \neq \emptyset$.} Omitted. - \end{byCase} + Let $M = \{ m\in \naturals \mid\text{$m = \emptyset$ or $m$ is a successor ordinal}\}$. + $M$ is an inductive set by \cref{suc_ordinal,naturals_inductive_set,successor_ordinal,emptyset_is_ordinal}. + Now $M\subseteq \naturals\subseteq M$ + by \cref{subseteq,naturals_smallest_inductive_set}. + Thus $M = \naturals$. + Follows by \cref{subseteq}. \end{proof} - +\begin{lemma}\label{nat_is_transitiveset} + $\naturals$ is \in-transitive. +\end{lemma} +\begin{proof} + Let $M = \{ m\in\naturals \mid \text{for all $n\in m$ we have $n\in\naturals$} \}$. + $\emptyset\in M$. + For all $n\in M$ we have $\suc{n}\in M$ + by \cref{naturals_inductive_set,suc}. + Thus $M$ is an inductive set. + Now $M\subseteq \naturals\subseteq M$ + by \cref{subseteq,naturals_smallest_inductive_set}. + Hence $\naturals = M$. +\end{proof} -\begin{lemma}\label{naturals_inductive_set} - $\naturals$ is an inductive set. +\begin{lemma}\label{natural_number_is_ordinal} + Every natural number is an ordinal. \end{lemma} +\begin{proof} + Follows by \cref{suc_ordinal,suc_neq_emptyset,naturals_inductive_set,nat_is_successor_ordinal,successor_ordinal,suc_ordinal_implies_ordinal}. +\end{proof} +\begin{lemma}\label{omega_is_an_ordinal} + $\naturals$ is an ordinal. +\end{lemma} +\begin{proof} + Follows by \cref{natural_number_is_ordinal,transitive_set_of_ordinals_is_ordinal,nat_is_transitiveset}. +\end{proof} -\begin{lemma}\label{naturals_smallest_inductive_set} - Let $A$ be an inductive set. - Then $\naturals\subseteq A$. +\begin{lemma}\label{omega_is_a_limit_ordinal} + $\naturals$ is a limit ordinal. \end{lemma} +\begin{proof} + $\emptyset\precedes \naturals$. + If $n\in \naturals$, then $\suc{n}\in\naturals$. +\end{proof} +\subsubsection{Properties and Facts natural numbers} + +\begin{theorem}\label{induction_principle} + Let $P$ be a set. + Suppose $P \subseteq \naturals$. + Suppose $\zero \in P$. + Suppose $\forall n \in P. \suc{n} \in P$. + Then $P = \naturals$. +\end{theorem} +\begin{proof} + Trivial. +\end{proof} + +\begin{proposition}\label{existence_of_suc} + Let $n \in \naturals$. + Suppose $n \neq \zero$. + Then there exist $n' \in \naturals$ such that $\suc{n'} = n$. +\end{proposition} +\begin{proof} + Follows by \cref{transitiveset,nat_is_transitiveset,suc_intro_self,successor_ordinal,nat_is_successor_ordinal}. +\end{proof} + +\begin{proposition}\label{suc_eq_plus_one} + Let $n \in \naturals$. + Then $\suc{n} = n + 1$. +\end{proposition} +\begin{proof} + Let $P = \{ n \in \naturals \mid n + 1 = 1 + n \}$. + $\zero \in P$. + It suffices to show that if $m \in P$ then $\suc{m} \in P$. +\end{proof} + +\begin{proposition}\label{naturals_1_kommu} + Let $n \in \naturals$. + Then $1 + n = n + 1$. +\end{proposition} + +\begin{proposition}\label{naturals_add_kommu} + For all $n \in \naturals$ we have for all $m\in \naturals$ we have $n + m = m + n$. +\end{proposition} +\begin{proof} + Fix $n \in \naturals$. + Let $P = \{ m \in \naturals \mid m + n = n + m \}$. + It suffices to show that $P = \naturals$. + $P \subseteq \naturals$. + $\zero \in P$. + It suffices to show that if $m \in P$ then $\suc{m} \in P$. +\end{proof} + +\begin{proposition}\label{naturals_add_assoc} + Suppose $n,m,k \in \naturals$. + Then $n + (m + k) = (n + m) + k$. +\end{proposition} +\begin{proof} + Let $P = \{ k \in \naturals \mid \text{for all $n',m' \in \naturals$ we have $n' + (m' + k) = (n' + m') + k$}\}$. + $P \subseteq \naturals$. + We show that $P = \naturals$. + \begin{subproof} + $\zero \in P$. + It suffices to show that for all $k \in P$ we have $\suc{k} \in P$. + Fix $k \in P$. + \begin{align*} + (n + m) + \suc{k} \\ + &= \suc{(n+m) + k} \\ + &= \suc{n + (m + k)} \\ + &= n + \suc{(m + k)} \\ + &= n + (m + \suc{k}) + \end{align*} + For all $n,m \in \naturals$ we have $(n + m) + \suc{k} = n + (m + \suc{k})$. + \end{subproof} +\end{proof} + +\begin{proposition}\label{naturals_rmul_one} + For all $n \in \naturals$ we have $n \rmul 1 = n$. +\end{proposition} + + +\begin{proposition}\label{naturals_mul_kommu} + Let $n, m \in \naturals$. + Then $n \rmul m = m \rmul n$. +\end{proposition} + +\begin{proposition}\label{naturals_rmul_assoc} + Suppose $n,m,k \in \naturals$. + Then $n \rmul (m \rmul k) = (n \rmul m) \rmul k$. +\end{proposition} + \begin{lemma}\label{naturals_is_equal_to_two_times_naturals} $\{x+y \mid x \in \naturals, y \in \naturals \} = \naturals$. \end{lemma} @@ -153,9 +261,6 @@ Omitted. \end{proof} -%\begin{lemma}\label{oeder_on_naturals} -% $\lt[\reals] \inter (\naturals \times \naturals)$ is an order on $\naturals$. -%\end{lemma} @@ -387,9 +492,9 @@ -%\begin{proposition}\label{safe} -% Contradiction. -%\end{proposition} +\begin{proposition}\label{safe} + Contradiction. +\end{proposition} \section{The integers} diff --git a/library/ordinal.tex b/library/ordinal.tex index 3063162..6f924c1 100644 --- a/library/ordinal.tex +++ b/library/ordinal.tex @@ -3,7 +3,7 @@ \import{set/powerset.tex} \import{set/regularity.tex} \import{set/suc.tex} -\import{nat.tex} +%\import{nat.tex} \section{Transitive sets} @@ -584,55 +584,56 @@ Then $\alpha\subseteq\beta$. Follows by \cref{subseteq_antisymmetric}. \end{proof} - -\subsection{Natural numbers as ordinals} - -\begin{lemma}\label{nat_is_successor_ordinal} - Let $n\in\naturals$. - Suppose $n\neq \emptyset$. - Then $n$ is a successor ordinal. -\end{lemma} -\begin{proof} - Let $M = \{ m\in \naturals \mid\text{$m = \emptyset$ or $m$ is a successor ordinal}\}$. - $M$ is an inductive set by \cref{suc_ordinal,naturals_inductive_set,successor_ordinal,emptyset_is_ordinal}. - Now $M\subseteq \naturals\subseteq M$ - by \cref{subseteq,naturals_smallest_inductive_set}. - Thus $M = \naturals$. - Follows by \cref{subseteq}. -\end{proof} - -\begin{lemma}\label{nat_is_transitiveset} - $\naturals$ is \in-transitive. -\end{lemma} -\begin{proof} - Let $M = \{ m\in\naturals \mid \text{for all $n\in m$ we have $n\in\naturals$} \}$. - $\emptyset\in M$. - For all $n\in M$ we have $\suc{n}\in M$ - by \cref{naturals_inductive_set,suc}. - Thus $M$ is an inductive set. - Now $M\subseteq \naturals\subseteq M$ - by \cref{subseteq,naturals_smallest_inductive_set}. - Hence $\naturals = M$. -\end{proof} - -\begin{lemma}\label{natural_number_is_ordinal} - Every natural number is an ordinal. -\end{lemma} -\begin{proof} - Follows by \cref{suc_ordinal,suc_neq_emptyset,naturals_inductive_set,nat_is_successor_ordinal,successor_ordinal,suc_ordinal_implies_ordinal}. -\end{proof} - -\begin{lemma}\label{omega_is_an_ordinal} - $\naturals$ is an ordinal. -\end{lemma} -\begin{proof} - Follows by \cref{natural_number_is_ordinal,transitive_set_of_ordinals_is_ordinal,nat_is_transitiveset}. -\end{proof} - -\begin{lemma}\label{omega_is_a_limit_ordinal} - $\naturals$ is a limit ordinal. -\end{lemma} -\begin{proof} - $\emptyset\precedes \naturals$. - If $n\in \naturals$, then $\suc{n}\in\naturals$. -\end{proof} +% +%\subsection{Natural numbers as ordinals} +% +%\begin{lemma}\label{nat_is_successor_ordinal} +% Let $n\in\naturals$. +% Suppose $n\neq \emptyset$. +% Then $n$ is a successor ordinal. +%\end{lemma} +%\begin{proof} +% Let $M = \{ m\in \naturals \mid\text{$m = \emptyset$ or $m$ is a successor ordinal}\}$. +% $M$ is an inductive set by \cref{suc_ordinal,naturals_inductive_set,successor_ordinal,emptyset_is_ordinal}. +% Now $M\subseteq \naturals\subseteq M$ +% by \cref{subseteq,naturals_smallest_inductive_set}. +% Thus $M = \naturals$. +% Follows by \cref{subseteq}. +%\end{proof} +% +%\begin{lemma}\label{nat_is_transitiveset} +% $\naturals$ is \in-transitive. +%\end{lemma} +%\begin{proof} +% Let $M = \{ m\in\naturals \mid \text{for all $n\in m$ we have $n\in\naturals$} \}$. +% $\emptyset\in M$. +% For all $n\in M$ we have $\suc{n}\in M$ +% by \cref{naturals_inductive_set,suc}. +% Thus $M$ is an inductive set. +% Now $M\subseteq \naturals\subseteq M$ +% by \cref{subseteq,naturals_smallest_inductive_set}. +% Hence $\naturals = M$. +%\end{proof} +% +%\begin{lemma}\label{natural_number_is_ordinal} +% Every natural number is an ordinal. +%\end{lemma} +%\begin{proof} +% Follows by \cref{suc_ordinal,suc_neq_emptyset,naturals_inductive_set,nat_is_successor_ordinal,successor_ordinal,suc_ordinal_implies_ordinal}. +%\end{proof} +% +%\begin{lemma}\label{omega_is_an_ordinal} +% $\naturals$ is an ordinal. +%\end{lemma} +%\begin{proof} +% Follows by \cref{natural_number_is_ordinal,transitive_set_of_ordinals_is_ordinal,nat_is_transitiveset}. +%\end{proof} +% +%\begin{lemma}\label{omega_is_a_limit_ordinal} +% $\naturals$ is a limit ordinal. +%\end{lemma} +%\begin{proof} +% $\emptyset\precedes \naturals$. +% If $n\in \naturals$, then $\suc{n}\in\naturals$. +%\end{proof} +%
\ No newline at end of file |
