summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--library/numbers.tex41
-rw-r--r--library/topology/basis.tex51
-rw-r--r--library/topology/metric-space.tex77
-rw-r--r--library/topology/separation.tex80
-rw-r--r--library/topology/topological-space.tex270
5 files changed, 387 insertions, 132 deletions
diff --git a/library/numbers.tex b/library/numbers.tex
index 5dd06da..2451730 100644
--- a/library/numbers.tex
+++ b/library/numbers.tex
@@ -4,8 +4,6 @@
\section{The real numbers}
-%TODO: Implementing Notion for negativ number such as -x.
-
%TODO:
%\inv{} für inverse benutzen. Per Signatur einfüheren und dann axiomatisch absicher
%\cdot für multiklikation verwenden.
@@ -17,11 +15,11 @@
\end{signature}
\begin{signature}
- $x + y$ is a set.
+ $x \add y$ is a set.
\end{signature}
\begin{signature}
- $x \times y$ is a set.
+ $x \rmul y$ is a set.
\end{signature}
\begin{axiom}\label{one_in_reals}
@@ -58,7 +56,7 @@
\end{axiom}
\begin{axiom}\label{reals_axiom_order_def}
- $x < y$ iff there exist $z \in \reals$ such that $\zero < z$ and $x + z = y$.
+ $x < y$ iff there exist $z \in \reals$ such that $\zero < z$ and $x \add z = y$.
\end{axiom}
\begin{lemma}\label{reals_one_bigger_than_zero}
@@ -67,11 +65,11 @@
\begin{axiom}\label{reals_axiom_assoc}
- For all $x,y,z \in \reals$ $(x + y) + z = x + (y + z)$ and $(x \times y) \times z = x \times (y \times z)$.
+ For all $x,y,z \in \reals$ $(x \add y) \add z = x \add (y \add z)$ and $(x \rmul y) \rmul z = x \rmul (y \rmul z)$.
\end{axiom}
\begin{axiom}\label{reals_axiom_kommu}
- For all $x,y \in \reals$ $x + y = y + x$ and $x \times y = y \times x$.
+ For all $x,y \in \reals$ $x \add y = y \add x$ and $x \rmul y = y \rmul x$.
\end{axiom}
\begin{axiom}\label{reals_axiom_zero_in_reals}
@@ -79,32 +77,32 @@
\end{axiom}
\begin{axiom}\label{reals_axiom_zero}
- For all $x \in \reals$ $x + \zero = x$.
+ For all $x \in \reals$ $x \add \zero = x$.
\end{axiom}
\begin{axiom}\label{reals_axiom_one}
- For all $x \in \reals$ $1 \neq \zero$ and $x \times 1 = x$.
+ For all $x \in \reals$ $1 \neq \zero$ and $x \rmul 1 = x$.
\end{axiom}
\begin{axiom}\label{reals_axiom_add_invers}
- For all $x \in \reals$ there exist $y \in \reals$ such that $x + y = \zero$.
+ For all $x \in \reals$ there exist $y \in \reals$ such that $x \add y = \zero$.
\end{axiom}
\begin{axiom}\label{reals_axiom_mul_invers}
- For all $x \in \reals$ such that $x \neq \zero$ there exist $y \in \reals$ such that $x \times y = 1$.
+ For all $x \in \reals$ such that $x \neq \zero$ there exist $y \in \reals$ such that $x \rmul y = 1$.
\end{axiom}
\begin{axiom}\label{reals_axiom_disstro1}
- For all $x,y,z \in \reals$ $x \times (y + z) = (x \times y) + (x \times z)$.
+ For all $x,y,z \in \reals$ $x \rmul (y \add z) = (x \rmul y) \add (x \rmul z)$.
\end{axiom}
\begin{proposition}\label{reals_disstro2}
- For all $x,y,z \in \reals$ $(y + z) \times x = (y \times x) + (z \times x)$.
+ For all $x,y,z \in \reals$ $(y \add z) \rmul x = (y \rmul x) \add (z \rmul x)$.
\end{proposition}
\begin{proposition}\label{reals_reducion_on_addition}
- For all $x,y,z \in \reals$ if $x + y = x + z$ then $y = z$.
+ For all $x,y,z \in \reals$ if $x \add y = x \add z$ then $y = z$.
\end{proposition}
\begin{axiom}\label{reals_axiom_dedekind_complete}
@@ -116,20 +114,20 @@
\begin{lemma}\label{order_reals_lemma1}
For all $x,y,z \in \reals$ such that $\zero < x$
if $y < z$
- then $(y \times x) < (z \times x)$.
+ then $(y \rmul x) < (z \rmul x)$.
\end{lemma}
\begin{lemma}\label{order_reals_lemma2}
For all $x,y,z \in \reals$ such that $\zero < x$
if $y < z$
- then $(x \times y) < (x \times z)$.
+ then $(x \rmul y) < (x \rmul z)$.
\end{lemma}
\begin{lemma}\label{order_reals_lemma3}
For all $x,y,z \in \reals$ such that $x < \zero$
if $y < z$
- then $(x \times z) < (x \times y)$.
+ then $(x \rmul z) < (x \rmul y)$.
\end{lemma}
\begin{lemma}\label{o4rder_reals_lemma}
@@ -145,17 +143,13 @@
\end{lemma}
\begin{axiom}\label{reals_axiom_minus}
- For all $x \in \reals$ $x - x = \zero$.
+ For all $x \in \reals$ $x \rmiuns x = \zero$.
\end{axiom}
\begin{lemma}\label{reals_minus}
- Assume $x,y \in \reals$. If $x - y = \zero$ then $x=y$.
+ Assume $x,y \in \reals$. If $x \rmiuns y = \zero$ then $x=y$.
\end{lemma}
-%\begin{definition}\label{reasl_supremum} %expaction "there exists" after \mid
-% $\rsup{X} = \{z \mid \text{ $z \in \reals$ and for all $x,y$ such that $x \in X$ and $y,x \in \reals$ and $x < y$ we have $z \leq y$ }\}$.
-%\end{definition}
-
\begin{definition}\label{upper_bound}
$x$ is an upper bound of $X$ iff for all $y \in X$ we have $x > y$.
\end{definition}
@@ -185,7 +179,6 @@
\end{definition}
\begin{lemma}\label{infimum_unique}
- %Let $x,y \in \reals$ and let $X$ be a subset of $\reals$.
If $x$ is a greatest lower bound of $X$ and $y$ is a greatest lower bound of $X$ then $x = y$.
\end{lemma}
diff --git a/library/topology/basis.tex b/library/topology/basis.tex
index 6fa9fbd..bd7d15a 100644
--- a/library/topology/basis.tex
+++ b/library/topology/basis.tex
@@ -56,24 +56,52 @@
$\emptyset \in \genOpens{B}{X}$.
\end{lemma}
-\begin{lemma}\label{all_is_in_genopens}
+
+
+\begin{lemma}\label{union_in_genopens}
Assume $B$ is a topological basis for $X$.
- $X \in \genOpens{B}{X}$.
+ Assume $F\subseteq \genOpens{B}{X}$.
+ Then $\unions{F}\in\genOpens{B}{X}$.
\end{lemma}
\begin{proof}
- $B$ covers $X$ by \cref{topological_prebasis_iff_covering_family,topological_basis}.
- $\unions{B} \in \genOpens{B}{X}$.
- $X \subseteq \unions{B}$.
+ We have $\unions{F} \in \pow{X}$.
+
+ Show for all $x\in \unions{F}$ there exists $W \in B$
+ such that $x\in W$ and $W \subseteq \unions{F}$.
+ \begin{subproof}
+ Fix $x \in \unions{F}$.
+ There exists $V \in F$ such that $x \in V$ by \cref{unions_iff}.
+ $V \in \genOpens{B}{X}$.
+ There exists $W \in B$ such that $x \in W \subseteq V$.
+ Then $W \subseteq \unions{F}$.
+ \end{subproof}
+ Then $\unions{F}\in\genOpens{B}{X}$ by \cref{genopens}.
\end{proof}
-\begin{lemma}\label{union_in_genopens}
+\begin{lemma}\label{basis_is_in_genopens}
Assume $B$ is a topological basis for $X$.
- For all $F\subseteq \genOpens{B}{X}$ we have $\unions{F}\in\genOpens{B}{X}$.
+ $B \subseteq \genOpens{B}{X}$.
\end{lemma}
\begin{proof}
- Omitted.
+ We show for all $V \in B$ $V \in \genOpens{B}{X}$.
+ \begin{subproof}
+ Fix $V \in B$.
+ For all $x \in V$ $x \in V \subseteq V$.
+ $V \subseteq X$ by \cref{topological_prebasis_iff_covering_family,topological_basis}.
+ $V \in \pow{X}$.
+ $V \in \genOpens{B}{X}$.
+ \end{subproof}
\end{proof}
+\begin{lemma}\label{all_is_in_genopens}
+ Assume $B$ is a topological basis for $X$.
+ $X \in \genOpens{B}{X}$.
+\end{lemma}
+\begin{proof}
+ $B$ covers $X$ by \cref{topological_prebasis_iff_covering_family,topological_basis}.
+ $\unions{B} \in \genOpens{B}{X}$.
+ $X \subseteq \unions{B}$.
+\end{proof}
\begin{lemma}\label{inters_in_genopens}
Assume $B$ is a topological basis for $X$.
@@ -92,16 +120,13 @@
Then $x\in A,C$.
There exists $V' \in B$ such that $x \in V' \subseteq A$ by \cref{genopens}.
There exists $V'' \in B$ such that $x \in V''\subseteq C$ by \cref{genopens}.
- There exists $W \in B$ such that $x \in W$ and $W \subseteq V'$ and $W \subseteq V''$.
+ There exists $W \in B$ such that $x \in W$ and $W \subseteq V'$ and $W \subseteq V''$ by \cref{topological_basis}.
Show $W \subseteq (A\inter C)$.
\begin{subproof}
- %$W \subseteq v'$ and $W \subseteq V''$.
For all $y \in W$ we have $y \in V'$ and $y \in V''$.
\end{subproof}
\end{subproof}
- %Therefore for all $A, C, x$ such that $A \in \genOpens{B}{X}$ and $C \in \genOpens{B}{X}$ and $x \in (A \inter C)$ we have there exists $W \in B$
- %such that $x\in W$ and $W \subseteq (A\inter C)$.
- $(A\inter C) \in \genOpens{B}{X}$.
+ $(A\inter C) \in \genOpens{B}{X}$ by \cref{genopens}.
\end{proof}
diff --git a/library/topology/metric-space.tex b/library/topology/metric-space.tex
index 1c6a0ca..bcc5b8c 100644
--- a/library/topology/metric-space.tex
+++ b/library/topology/metric-space.tex
@@ -21,44 +21,16 @@
-%\begin{definition}\label{induced_topology}
-% $O$ is the induced topology of $d$ in $M$ iff
-% $O \subseteq \pow{M}$ and
-% $d$ is a metric on $M$ and
-% for all $x,r,A,B,C$
-% such that $x \in M$ and $r \in \reals$ and $A,B \in O$ and $C$ is a family of subsets of $O$
-% we have $\openball{r}{x}{d} \in O$ and $\unions{C} \in O$ and $A \inter B \in O$.
-%\end{definition}
-
-%\begin{definition}
-% $\projcetfirst{A} = \{a \mid \exists x \in X \text{there exist $x \i } \}$
-%\end{definition}
-
\begin{definition}\label{set_of_balls}
$\balls{d}{M} = \{ O \in \pow{M} \mid \text{there exists $x,r$ such that $r \in \reals$ and $x \in M$ and $O = \openball{r}{x}{d}$ } \}$.
\end{definition}
-%\begin{definition}\label{toindsas}
-% $\metricopens{d}{M} = \{O \in \pow{M} \mid \text{
-% $d$ is a metric on $M$ and
-% for all $x,r,A,B,C$
-% such that $x \in M$ and $r \in \reals$ and $A,B \in O$ and $C$ is a family of subsets of $O$
-% we have $\openball{r}{x}{d} \in O$ and $\unions{C} \in O$ and $A \inter B \in O$.
-% } \}$.
-%
-%\end{definition}
-
\begin{definition}\label{metricopens}
$\metricopens{d}{M} = \genOpens{\balls{d}{M}}{M}$.
\end{definition}
-\begin{theorem}
- Let $d$ be a metric on $M$.
- $M$ is a topological space.
-\end{theorem}
-
@@ -93,13 +65,6 @@
\end{lemma}
-%\begin{definition}\label{lenght_of_interval} %TODO: take minus if its implemented
-% $\lenghtinterval{x}{y} = r$
-%\end{definition}
-
-
-
-
\begin{lemma}\label{metric_implies_topology}
@@ -108,45 +73,3 @@
\end{lemma}
-
-
-
-%\begin{struct}\label{metric_space}
-% A metric space $M$ is a onesorted structure equipped with
-% \begin{enumerate}
-% \item $\metric$
-% \end{enumerate}
-% such that
-% \begin{enumerate}
-% \item \label{metric_space_d} $\metric[M]$ is a function from $M \times M$ to $\reals$.
-% \item \label{metric_space_distence_of_a_point} $\metric[M](x,x) = \zero$.
-% \item \label{metric_space_positiv} for all $x,y \in M$ if $x \neq y$ then $\zero < \metric[M](x,y)$.
-% \item \label{metric_space_symetrie} $\metric[M](x,y) = \metric[M](y,x)$.
-% \item \label{metric_space_triangle_equation} for all $x,y,z \in M$ $\metric[M](x,y) < \metric[M](x,z) + \metric[M](z,y)$ or $\metric[M](x,y) = \metric[M](x,z) + \metric[M](z,y)$.
-% \item \label{metric_space_topology} $M$ is a topological space.
-% \item \label{metric_space_opens} for all $x \in M$ for all $r \in \reals$ $\{z \in M \mid \metric[M](x,z) < r\} \in \opens$.
-% \end{enumerate}
-%\end{struct}
-
-%\begin{definition}\label{open_ball}
-% $\openball{r}{x}{M} = \{z \in M \mid \metric(x,z) < r\}$.
-%\end{definition}
-
-%\begin{proposition}\label{open_ball_is_open}
-% Let $M$ be a metric space,let $r \in \reals $, let $x$ be an element of $M$.
-% Then $\openball{r}{x}{M} \in \opens[M]$.
-%\end{proposition}
-
-
-
-
-
-
-%TODO: - Basis indudiert topology lemma
-% - Offe Bälle sind basis
-
-% Was danach kommen soll bleibt offen, vll buch oder in proof wiki
-% Trennungsaxiom,
-
-% Notaionen aufräumen damit das gut gemercht werden kann.
-
diff --git a/library/topology/separation.tex b/library/topology/separation.tex
index f70cb50..3268bb9 100644
--- a/library/topology/separation.tex
+++ b/library/topology/separation.tex
@@ -73,14 +73,29 @@
\begin{proposition}\label{teeone_implies_singletons_closed}
Let $X$ be a \teeone-space.
- Then for all $x\in\carrier[X]$ we have $\{x\}$ is closed in $X$.
+ Assume $x \in \carrier[X]$.
+ Then $\{x\}$ is closed in $X$.
\end{proposition}
\begin{proof}
- Omitted.
- % TODO
- % Choose for every y distinct from x and open subset U_y containing y but not x.
- % The union U of all the U_y is open.
- % {x} is the complement of U in \carrier[X].
+ Let $V = \{ U \in \opens[X] \mid x \notin U\}$.
+ For all $y \in \carrier[X]$ such that $x \neq y$ there exist $U \in \opens[X]$ such that $x \notin U \ni y$.
+ For all $y \in \carrier[X]$ such that $y \neq x$ there exists $U \in V$ such that $y \in U$.
+
+ $\unions{V} \in \opens[X]$.
+ For all $y \in \carrier[X]$ such that $x \neq y$ we have $y \in \unions{V}$.
+ We show that $\carrier[X] \setminus \{x\} = \unions{V}$.
+ \begin{subproof}
+ We show that for all $y \in \carrier[X] \setminus \{x\}$ we have $y \in \unions{V}$.
+ \begin{subproof}
+ Fix $y \in \carrier[X] \setminus \{x\}$.
+ $y \neq x$.
+ $y \in \carrier[X]$.
+ $y \in \unions{V}$.
+ \end{subproof}
+ For all $y \in \unions{V}$ we have $y \notin \{x\}$.
+ For all $y \in \unions{V}$ we have $y \in \carrier[X] \setminus \{x\}$.
+ Follows by set extensionality.
+ \end{subproof}
\end{proof}
%
% Conversely, if \{x\} is open, then for any y distinct from x we can use
@@ -120,5 +135,56 @@
Then $X$ is a \teeone-space.
\end{proposition}
\begin{proof}
- Omitted. % TODO
+ We show that for all $x,y\in\carrier[X]$ such that $x\neq y$
+ there exist $U, V\in\opens[X]$ such that
+ $U\ni x\notin V$ and $V\ni y\notin U$.
+ \begin{subproof}
+ $X$ is hausdorff.
+ For all $x,y\in\carrier[X]$ such that $x\neq y$
+ there exist $U, V\in\opens[X]$ such that
+ $x\in U$ and $y\in V$ and $U$ is disjoint from $V$.
+ \end{subproof}
+\end{proof}
+
+\begin{definition}\label{regular}
+ $X$ is regular iff for all $C,p$ such that $p \in \carrier[X]$ and $p \notin C \in \closeds{X}$ we have there exists $U,C \in \opens[X]$ such that $p \in U$ and $C \subseteq V$ and $U \inter V = \emptyset$.
+\end{definition}
+
+\begin{definition}\label{regular_space}
+ $X$ is a regular space iff $X$ is a topological space and $X$ is regular.
+\end{definition}
+
+
+\begin{definition}\label{teethree}
+ $X$ is \teethree\ iff $X$ is regular and $X$ is \teezero\ .
+\end{definition}
+
+\begin{definition}\label{teethree_space}
+ $X$ is a \teethree-space iff $X$ is a topological space and $X$ is \teethree\ .
+\end{definition}
+
+\begin{proposition}\label{teethree_space_is_teetwo_space}
+ Let $X$ be a \teethree-space.
+ Then $X$ is a \teetwo-space.
+\end{proposition}
+\begin{proof}
+ For all $x,y \in \carrier[X]$ such that $x \neq y$ we have $x \notin \{y\}$.
+ It suffices to show that $X$ is hausdorff.
+ It suffices to show that for all $x \in \carrier[X]$ we have for all $y \in \carrier[X]$ such that $y \neq x$ we have there exist $U,V \in \opens[X]$ such that $x\in U$ and $y \in V$ and $U$ is disjoint from $V$.
+ Fix $x \in \carrier[X]$.
+ It suffices to show that for all $y \in \carrier[X]$ such that $y \neq x$ we have there exist $U,V \in \opens[X]$ such that $x\in U$ and $y \in V$ and $U$ is disjoint from $V$.
+ Fix $y \in \carrier[X]$.
+
+ %There exist $U' \in \opens[X]$ such that $x\in U'\not\ni y$ or $x\notin U'\ni y$ by \cref{}.
+ %There exist $C \in \closeds{X}$ such that $y \in C \not\ni X$.
+ We show that there exist $U,V,C$ such that $U,V \in \opens[X]$ and $C\in \closeds{X}$ and $x \in U$ and $y \in C \subseteq V$ and $U$ is disjoint from $V$.
+ \begin{subproof}
+ Omitted.
+ \end{subproof}
+ $y \in V$.
+ Follows by assumption.
\end{proof}
+
+% for all $x,y\in\carrier[X]$ such that $x\neq y$
+% there exist $U, V\in\opens[X]$ such that
+% $x\in U$ and $y\in V$ and $U$ is disjoint from $V$. \ No newline at end of file
diff --git a/library/topology/topological-space.tex b/library/topology/topological-space.tex
index 55bc253..73b7ec5 100644
--- a/library/topology/topological-space.tex
+++ b/library/topology/topological-space.tex
@@ -161,12 +161,21 @@
\begin{proposition}\label{carrier_is_closed}
Let $X$ be a topological space.
- Then $\emptyset$ is closed in $X$.
+ Then $\carrier[X]$ is closed in $X$.
\end{proposition}
\begin{proof}
$\carrier[X]\setminus \carrier[X] = \emptyset$.
+ Follows by \cref{emptyset_open,is_closed_in}.
\end{proof}
+\begin{proposition}\label{opens_minus_closed_is_open}
+ Let $X$ be a topological space.
+ Suppose $A, B \subseteq \carrier[X]$.
+ Suppose $A$ is open in $X$.
+ Suppose $B$ is closed in $X$.
+ Then $A \setminus B$ is open in $X$.
+\end{proposition}
+
\begin{definition}[Closed sets]\label{closeds}
$\closeds{X} = \{ A\in\pow{\carrier[X]}\mid\text{$A$ is closed in $X$}\}$.
\end{definition}
@@ -216,31 +225,270 @@
Follows by \cref{inters_singleton,closure}.
\end{proof}
+\begin{proposition}\label{subseteq_inters_iff_to_right}
+ Let $A,F$ be sets.
+ Suppose $A \subseteq \inters{F}$.
+ Then for all $X \in F$ we have $A \subseteq X$.
+\end{proposition}
+
+
+\begin{proposition}\label{subseteq_of_all_then_subset_of_union}
+ Let $A,F$ be sets.
+ Suppose $F$ is inhabited. %TODO: Remove!!
+ Suppose for all $X \in F$ we have $A \subseteq X$.
+ Then $A \subseteq \unions{F}$.
+\end{proposition}
+\begin{proof}
+ There exist $X \in F$ such that $X \subseteq \unions{F}$.
+ $A \subseteq X \subseteq \unions{F}$.
+\end{proof}
+
+
+
+\begin{proposition}\label{subseteq_inters_iff_to_left}
+ Let $A,F$ be sets.
+ Suppose $F$ is inhabited. % TODO:Remove!!
+ Suppose for all $X \in F$ we have $A \subseteq X$.
+ Then $A \subseteq \inters{F}$.
+\end{proposition}
+\begin{proof}
+ \begin{byCase}
+ \caseOf{$A = \emptyset$.}Trivial.
+ \caseOf{$A \neq \emptyset$.}
+ $F$ is inhabited.
+ It suffices to show that for all $a \in A$ we have $a \in \inters{F}$.
+ Fix $a \in A$.
+ For all $X \in F$ we have $a \in X$.
+ $A \subseteq \unions{F}$.
+ $a \in \unions{F}$.
+ \end{byCase}
+\end{proof}
+
+\begin{proposition}\label{subseteq_inters_iff_new}
+ Suppose $F$ is inhabited.
+ $A \subseteq \inters{F}$ iff for all $X \in F$ we have $A \subseteq X$.
+\end{proposition}
+
+\begin{proposition}\label{set_is_subseteq_to_closure_of_the_set}
+ Let $X$ be a topological space.
+ Suppose $A \subseteq \carrier[X]$.
+ $A \subseteq \closure{A}{X}$.
+\end{proposition}
+\begin{proof}
+ \begin{byCase}
+ \caseOf{$A = \emptyset$.}
+ Trivial.
+ \caseOf{$A \neq \emptyset$.}
+ We show that $\carrier[X] \in \closures{A}{X}$.
+ \begin{subproof}
+ $\carrier[X]$ is closed in $X$.
+ $\carrier[X] \in \pow{\carrier[X]}$.
+ \end{subproof}
+ $\closures{A}{X}$ is inhabited.
+ For all $A' \in \closures{A}{X}$ we have $A \subseteq A'$.
+ Therefore $A \subseteq \inters{\closures{A}{X}}$.
+ \end{byCase}
+\end{proof}
+
+\begin{proposition}\label{complement_of_closure_of_complement_of_x_subseteq_x}
+ Let $X$ be a topological space.
+ Suppose $A \subseteq \carrier[X]$.
+ $(\carrier[X] \setminus \closure{(\carrier[X]\setminus A)}{X}) \subseteq A$.
+\end{proposition}
+\begin{proof}
+ It suffices to show that for all $x \in (\carrier[X] \setminus \closure{(\carrier[X]\setminus A)}{X})$ we have $x \in A$.
+ If $x \in \carrier[X]\setminus A$ then $x \in \closure{(\carrier[X]\setminus A)}{X}$.
+\end{proof}
+
+\begin{proposition}\label{complement_of_closed_is_open}
+ Let $X$ be a topological space.
+ Suppose $A \subseteq \carrier[X]$.
+ Suppose $A$ is closed in $X$.
+ Then $\carrier[X] \setminus A$ is open in $X$.
+\end{proposition}
+
+\begin{proposition}\label{complement_of_open_is_closed}
+ Let $X$ be a topological space.
+ Suppose $A \subseteq \carrier[X]$.
+ Suppose $A$ is open in $X$.
+ Then $\carrier[X] \setminus A$ is closed in $X$.
+\end{proposition}
+
+\begin{proposition}\label{intersection_of_closed_is_closed}
+ Let $X$ be a topological space.
+ Suppose $A, B \subseteq \carrier[X]$.
+ Suppose $A$ are closed in $X$.
+ Suppose $B$ are closed in $X$.
+ Then $A \inter B$ is closed in $X$.
+\end{proposition}
+\begin{proof}
+ $\carrier[X] \setminus A, \carrier[X] \setminus B \in \opens[X]$.
+ $(\carrier[X] \setminus A) \union (\carrier[X] \setminus B) \in \opens[X]$.
+ $A \inter B = \carrier[X] \setminus ((\carrier[X] \setminus A) \union (\carrier[X] \setminus B))$.
+\end{proof}
+
+\begin{proposition}\label{union_of_closed_is_closed}
+ Let $X$ be a topological space.
+ Suppose $A, B \subseteq \carrier[X]$.
+ Suppose $A$ are closed in $X$.
+ Suppose $B$ are closed in $X$.
+ Then $A \union B$ is closed in $X$.
+\end{proposition}
+\begin{proof}
+ $\carrier[X] \setminus A, \carrier[X] \setminus B \in \opens[X]$.
+ $(\carrier[X] \setminus A) \inter (\carrier[X] \setminus B) \in \opens[X]$.
+ $A \union B = \carrier[X] \setminus ((\carrier[X] \setminus A) \inter (\carrier[X] \setminus B))$.
+\end{proof}
+
+\begin{proposition}\label{closed_minus_open_is_closed}
+ Let $X$ be a topological space.
+ Suppose $A, B \subseteq \carrier[X]$.
+ Suppose $A$ is open in $X$.
+ Suppose $B$ is closed in $X$.
+ Then $B \setminus A$ is closed in $X$.
+\end{proposition}
+
+
+
+\begin{proposition}\label{intersection_of_closed_is_closed_infinite}
+ Let $X$ be a topological space.
+ Suppose $F \subseteq \pow{\carrier[X]}$.
+ Suppose for all $A \in F$ we have $A$ is closed in $X$.
+ Suppose $F$ is inhabited.
+ Then $\inters{F}$ is closed in $X$.
+\end{proposition}
+\begin{proof}
+ Let $F' = \{Y \in \pow{\carrier[X]} \mid \text{there exists $C \in F$ such that $Y = \carrier[X] \setminus C$ }\} $.
+ For all $Y \in F'$ we have $Y$ is open in $X$.
+ $\unions{F'}$ is open in $X$.
+ $\unions{F'}, \inters{F} \subseteq \carrier[X]$.
+ We show that $\inters{F} = \carrier[X] \setminus (\unions{F'})$.
+ \begin{subproof}
+ We show that for all $a \in \inters{F}$ we have $a \in \carrier[X] \setminus (\unions{F'})$.
+ \begin{subproof}
+ Fix $a \in \inters{F}$.
+ $a \in \carrier[X]$.
+ For all $A \in F$ we have $a \in A$.
+ For all $A \in F$ we have $a \notin (\carrier[X] \setminus A)$.
+ Then $a \notin \unions{F'}$.
+ Therefore $a \in \carrier[X] \setminus (\unions{F'})$.
+ \end{subproof}
+ We show that for all $a \in \carrier[X] \setminus (\unions{F'})$ we have $a \in \inters{F}$.
+ \begin{subproof}
+ \begin{byCase}
+ \caseOf{$\inters{F} = \emptyset$.}
+ $F$ is inhabited.
+ Take $U$ such that $U \in F$.
+ Let $F'' = F \setminus \{U\}$.
+ There exist $U' \in F'$ such that $U' = \carrier[X] \setminus U$.
+ \caseOf{$\inters{F} \neq \emptyset$.}
+ Fix $a \in \carrier[X] \setminus (\unions{F'})$.
+ $a \in \carrier[X]$.
+ $a \notin \unions{F'}$.
+ For all $A \in F'$ we have $a \notin A$.
+ For all $A \in F'$ we have $a \in (\carrier[X] \setminus A)$.
+ For all $A \in F'$ there exists $Y \in F$ such that $Y = (\carrier[X] \setminus A)$.
+ For all $Y \in F $ there exists $A \in F'$ such that $a \in Y = (\carrier[X] \setminus A)$.
+ For all $Y \in F$ we have $a \in Y$.
+ $\inters{F}$ is inhabited.
+ Therefore $a \in \inters{F}$.
+ \end{byCase}
+ \end{subproof}
+ Follows by set extensionality.
+ \end{subproof}
+ Follows by \cref{complement_of_open_is_closed}.
+\end{proof}
+
+\begin{proposition}\label{closure_is_closed}
+ Let $X$ be a topological space.
+ Suppose $A \subseteq \carrier[X]$.
+ Then $\closure{A}{X}$ is closed in $X$.
+\end{proposition}
+\begin{proof}
+ \begin{byCase}
+ \caseOf{$\closure{A}{X} = \emptyset$.}
+ Trivial.
+ \caseOf{$\closure{A}{X} \neq \emptyset$.}
+ $\closures{A}{X}$ is inhabited.
+ $\closures{A}{X} \subseteq \pow{\carrier[X]}$.
+ For all $B \in \closures{A}{X}$ we have $B$ is closed in $X$.
+ $\inters{\closures{A}{X}}$ is closed in $X$.
+ \end{byCase}
+\end{proof}
+
-\begin{proposition}%[Complement of interior equals closure of complement]
-\label{complement_interior_eq_closure_complement}
+
+\begin{proposition}\label{closure_is_minimal_closed_set}
+ Let $X$ be a topological space.
+ Suppose $A \subseteq \carrier[X]$.
+ For all $Y \in \closeds{X}$ such that $A \subseteq Y$ we have $\closure{A}{X} \subseteq Y$.
+\end{proposition}
+\begin{proof}
+ Follows by \cref{closure,closeds,inters_subseteq_elem,closures}.
+\end{proof}
+
+\begin{proposition}\label{complement_interior_eq_closure_complement}
+ Let $X$ be a topological space.
+ Suppose $A \subseteq \carrier[X]$.
$\carrier[X]\setminus\interior{A}{X} = \closure{(\carrier[X]\setminus A)}{X}$.
\end{proposition}
\begin{proof}
- Omitted. % Use general De Morgan's Law in Pow|X|
+ We show that for all $x \in \carrier[X]\setminus\interior{A}{X}$ we have $x \in \closure{(\carrier[X]\setminus A)}{X}$.
+ \begin{subproof}
+ Fix $x \in \carrier[X]\setminus\interior{A}{X}$.
+ Suppose not.
+ $x \notin \closure{(\carrier[X]\setminus A)}{X}$.
+ $x \in \carrier[X]$.
+ $(\carrier[X] \setminus \closure{(\carrier[X]\setminus A)}{X}) \inter \closure{(\carrier[X]\setminus A)}{X} = \emptyset$.
+ $x \in A$.
+ $x \in A \inter (\carrier[X] \setminus \closure{(\carrier[X]\setminus A)}{X})$.
+ $\carrier[X] \setminus \closure{(\carrier[X]\setminus A)}{X} \in \opens[X]$.
+ Contradiction.
+ \end{subproof}
+ $\carrier[X]\setminus\interior{A}{X} \subseteq \closure{(\carrier[X]\setminus A)}{X}$.
+ $\closure{(\carrier[X]\setminus A)}{X} \subseteq \carrier[X]\setminus\interior{A}{X}$.
\end{proof}
+
+
\begin{definition}[Frontier]\label{frontier}
$\frontier{A}{X} = \closure{A}{X}\setminus\interior{A}{X}$.
\end{definition}
+\begin{proposition}\label{closure_interior_frontier_is_in_carrier}
+ Let $X$ be a topological space.
+ Suppose $A \subseteq \carrier[X]$.
+ Then $\closure{A}{X}, \interior{A}{X}, \frontier{A}{X} \subseteq \carrier[X]$.
+\end{proposition}
+
+\begin{proposition}\label{frontier_is_closed}
+ Let $X$ be a topological space.
+ Suppose $A \subseteq \carrier[X]$.
+ Then $\frontier{A}{X}$ is closed in $X$.
+\end{proposition}
+\begin{proof}
+ $\closure{A}{X}\setminus\interior{A}{X}$ is closed in $X$ by \cref{closure_interior_frontier_is_in_carrier,closure_is_closed,interior_is_open,closed_minus_open_is_closed}.
+\end{proof}
+
+\begin{proposition}\label{setdifference_eq_intersection_with_complement}
+ Suppose $A,B \subseteq C$.
+ Then $A \setminus B = A \inter (C \setminus B)$.
+\end{proposition}
-\begin{proposition}%[Frontier as intersection of closures]
-\label{frontier_as_inter}
+
+\begin{proposition}\label{frontier_as_inter}
+ Let $X$ be a topological space.
+ Suppose $A \subseteq \carrier[X]$.
$\frontier{A}{X} = \closure{A}{X} \inter \closure{(\carrier[X]\setminus A)}{X}$.
\end{proposition}
\begin{proof}
- % TODO
- Omitted.
- %$\frontier{A}{X} = \closure{A}{X}\setminus\interior{A}{X}$. % by frontier (definition)
- %$\closure{A}{X}\setminus\interior{A}{X} = \closure{A}{X}\inter(\carrier[X]\setminus\interior{A}{X})$. % by setminus_eq_inter_complement
- %$\closure{A}{X}\inter(\carrier[X]\setminus\interior{A}{X}) = \closure{A}{X} \inter \closure{(\carrier[X]\setminus A)}{X}$. % by complement_interior_eq_closure_complement
+ \begin{align*}
+ \frontier{A}{X} \\
+ &= \closure{A}{X}\setminus\interior{A}{X} \\
+ &= \closure{A}{X} \inter (\carrier[X] \setminus \interior{A}{X}) \explanation{by \cref{setdifference_eq_intersection_with_complement,closure_interior_frontier_is_in_carrier}}\\
+ &= \closure{A}{X} \inter \closure{(\carrier[X]\setminus A)}{X} \explanation{by \cref{complement_interior_eq_closure_complement}}
+ \end{align*}
\end{proof}
\begin{proposition}\label{frontier_of_emptyset}