summaryrefslogtreecommitdiff
path: root/library/numbers.tex
diff options
context:
space:
mode:
Diffstat (limited to 'library/numbers.tex')
-rw-r--r--library/numbers.tex19
1 files changed, 19 insertions, 0 deletions
diff --git a/library/numbers.tex b/library/numbers.tex
index cb3d5cf..b7de307 100644
--- a/library/numbers.tex
+++ b/library/numbers.tex
@@ -245,12 +245,31 @@
Then $(n + m) + (k + l)= n + m + k + l = n + (m + k) + l = (((n + m) + k) + l)$.
\end{proposition}
+%\begin{proposition}\label{natural_disstro_oneline}
+% Suppose $n,m,k \in \naturals$.
+% Then $n \rmul (m + k) = (n \rmul m) + (n \rmul k)$.
+%\end{proposition}
+%\begin{proof}
+% Let $P = \{n \in \naturals \mid \forall m,k \in \naturals . n \rmul (m + k) = (n \rmul m) + (n \rmul k)\}$.
+% $\zero \in P$.
+% $P \subseteq \naturals$.
+% It suffices to show that for all $n \in P$ we have $\suc{n} \in P$.
+% Fix $n \in P$.
+% It suffices to show that for all $m'$ such that $m' \in \naturals$ we have for all $k' \in \naturals$ we have $\suc{n} \rmul (m' + k') = (\suc{n} \rmul m') + (\suc{n} \rmul k')$.
+% Fix $m' \in \naturals$.
+% Fix $k' \in \naturals$.
+% $n \in \naturals$.
+% $ \suc{n} \rmul (m' + k') = (n \rmul (m' + k')) + (m' + k') = ((n \rmul m') + (n \rmul k')) + (m' + k') = ((n \rmul m') + (n \rmul k')) + m' + k' = (((n \rmul m') + (n \rmul k')) + m') + k' = (m' + ((n \rmul m') + (n \rmul k'))) + k' = ((m' + (n \rmul m')) + (n \rmul k')) + k' = (((n \rmul m') + m') + (n \rmul k')) + k' = ((n \rmul m') + m') + ((n \rmul k') + k') = (\suc{n} \rmul m') + (\suc{n} \rmul k')$.
+%\end{proof}
+
\begin{proposition}\label{natural_disstro}
Suppose $n,m,k \in \naturals$.
Then $n \rmul (m + k) = (n \rmul m) + (n \rmul k)$.
\end{proposition}
\begin{proof}
+ %Let $P = \{n \in \naturals \mid \forall m,k \in \naturals . n \rmul (m + k) = (n \rmul m) + (n \rmul k)\}$.
Let $P = \{n \in \naturals \mid \text{for all $m,k \in \naturals$ we have $n \rmul (m + k) = (n \rmul m) + (n \rmul k)$}\}$.
+
$\zero \in P$.
$P \subseteq \naturals$.
It suffices to show that for all $n \in P$ we have $\suc{n} \in P$.