summaryrefslogtreecommitdiff
path: root/library/ordinal.tex
diff options
context:
space:
mode:
Diffstat (limited to 'library/ordinal.tex')
-rw-r--r--library/ordinal.tex9
1 files changed, 1 insertions, 8 deletions
diff --git a/library/ordinal.tex b/library/ordinal.tex
index c092fa8..f978257 100644
--- a/library/ordinal.tex
+++ b/library/ordinal.tex
@@ -235,13 +235,6 @@ To show that \in\ is a strict total order it only remains to show that \in\ is c
% Goal: ordinal(fgamma)=>(elem(falpha,fgamma)|elem(fgamma,falpha)|falpha=fgamma))
%
Assume $\gamma$ is an ordinal.
- % Goal:
- % elem(falpha,fgamma)|elem(fgamma,falpha)|falpha=fgamma
- %
- % Original Vampire proof:
- % Follows by \cref{setext,transitiveset,ordinal,in_implies_neq,prec_is_ordinal,in_asymmetric}.
- %
- % Pruned proof:
Follows by \cref{setext,transitiveset,ordinal}.
\end{subproof}
\end{proof}
@@ -489,7 +482,7 @@ Then $\alpha\subseteq\beta$.
\end{proposition}
\begin{proof}
% Vampire proof:
- Follows by \cref{inters_of_ordinals_is_ordinal,in_implies_neq,inters_iff_forall,ordinal_subseteq_implies_elem_or_eq,inters_subseteq_elem}.
+ Follows by \cref{inters_of_ordinals_is_ordinal,in_irrefl,inters_iff_forall,ordinal_subseteq_implies_elem_or_eq,inters_subseteq_elem}.
\end{proof}
\begin{proposition}\label{inters_of_ordinals_is_minimal}