diff options
Diffstat (limited to 'library/relation/equivalence.tex')
| -rw-r--r-- | library/relation/equivalence.tex | 101 |
1 files changed, 51 insertions, 50 deletions
diff --git a/library/relation/equivalence.tex b/library/relation/equivalence.tex index bda8486..87f70af 100644 --- a/library/relation/equivalence.tex +++ b/library/relation/equivalence.tex @@ -219,53 +219,54 @@ \end{proof} - -\begin{definition}\label{equivalence_from_partition} - $\equivfrompartition{P} = \{(a, b)\mid a\in A, b\in A\mid \exists C\in P.\ a, b\in C\}$. -\end{definition} - -\begin{proposition}\label{equivalence_from_partition_intro} - Let $P$ be a partition of $A$. - Let $a,b\in A$. - Suppose $a,b\in C\in P$. - Then $a\mathrel{\equivfrompartition{P}} b$. -\end{proposition} - -\begin{proposition}\label{equivalence_from_partition_reflexive} - Let $P$ be a partition of $A$. - $\equivfrompartition{P}$ is reflexive on $A$. -\end{proposition} - -\begin{proposition}\label{equivalence_from_partition_symmetric} - Let $P$ be a partition. - $\equivfrompartition{P}$ is symmetric. -\end{proposition} -\begin{proof} - Follows by \cref{symmetric,equivalence_from_partition,notin_emptyset}. -\end{proof} - -\begin{proposition}\label{equivalence_from_partition_transitive} - Let $P$ be a partition. - $\equivfrompartition{P}$ is transitive. -\end{proposition} - -\begin{proposition}\label{equivalence_from_partition_is_equivalence} - Let $P$ be a partition of $A$. - $\equivfrompartition{P}$ is an equivalence on $A$. -\end{proposition} - -\begin{proposition}\label{equivalence_from_quotient} - Let $E$ be an equivalence on $A$. - Then $\equivfrompartition{\quotient{A}{E}} = E$. -\end{proposition} -\begin{proof} - Follows by set extensionality. -\end{proof} - -\begin{proposition}\label{partition_eq_quotient_by_equivalence_from_partition} - Let $P$ be a partition of $A$. - Then $\quotient{A}{\equivfrompartition{P}} = P$. -\end{proposition} -\begin{proof} - Follows by set extensionality. -\end{proof} +% +%\begin{definition}\label{equivalence_from_partition} +% $\equivfrompartition{P} = \{(a, b)\mid a\in A, b\in A\mid \exists C\in P.\ a, b\in C\}$. +%\end{definition} +% +%\begin{proposition}\label{equivalence_from_partition_intro} +% Let $P$ be a partition of $A$. +% Let $a,b\in A$. +% Suppose $a,b\in C\in P$. +% Then $a\mathrel{\equivfrompartition{P}} b$. +%\end{proposition} +% +%\begin{proposition}\label{equivalence_from_partition_reflexive} +% Let $P$ be a partition of $A$. +% $\equivfrompartition{P}$ is reflexive on $A$. +%\end{proposition} +% +%\begin{proposition}\label{equivalence_from_partition_symmetric} +% Let $P$ be a partition. +% $\equivfrompartition{P}$ is symmetric. +%\end{proposition} +%\begin{proof} +% Follows by \cref{symmetric,equivalence_from_partition,notin_emptyset}. +%\end{proof} +% +%\begin{proposition}\label{equivalence_from_partition_transitive} +% Let $P$ be a partition. +% $\equivfrompartition{P}$ is transitive. +%\end{proposition} +% +%\begin{proposition}\label{equivalence_from_partition_is_equivalence} +% Let $P$ be a partition of $A$. +% $\equivfrompartition{P}$ is an equivalence on $A$. +%\end{proposition} +% +%\begin{proposition}\label{equivalence_from_quotient} +% Let $E$ be an equivalence on $A$. +% Then $\equivfrompartition{\quotient{A}{E}} = E$. +%\end{proposition} +%\begin{proof} +% Follows by set extensionality. +%\end{proof} +% +%\begin{proposition}\label{partition_eq_quotient_by_equivalence_from_partition} +% Let $P$ be a partition of $A$. +% Then $\quotient{A}{\equivfrompartition{P}} = P$. +%\end{proposition} +%\begin{proof} +% Follows by set extensionality. +%\end{proof} +%
\ No newline at end of file |
