summaryrefslogtreecommitdiff
path: root/library/relation
diff options
context:
space:
mode:
Diffstat (limited to 'library/relation')
-rw-r--r--library/relation/equivalence.tex101
1 files changed, 51 insertions, 50 deletions
diff --git a/library/relation/equivalence.tex b/library/relation/equivalence.tex
index bda8486..87f70af 100644
--- a/library/relation/equivalence.tex
+++ b/library/relation/equivalence.tex
@@ -219,53 +219,54 @@
\end{proof}
-
-\begin{definition}\label{equivalence_from_partition}
- $\equivfrompartition{P} = \{(a, b)\mid a\in A, b\in A\mid \exists C\in P.\ a, b\in C\}$.
-\end{definition}
-
-\begin{proposition}\label{equivalence_from_partition_intro}
- Let $P$ be a partition of $A$.
- Let $a,b\in A$.
- Suppose $a,b\in C\in P$.
- Then $a\mathrel{\equivfrompartition{P}} b$.
-\end{proposition}
-
-\begin{proposition}\label{equivalence_from_partition_reflexive}
- Let $P$ be a partition of $A$.
- $\equivfrompartition{P}$ is reflexive on $A$.
-\end{proposition}
-
-\begin{proposition}\label{equivalence_from_partition_symmetric}
- Let $P$ be a partition.
- $\equivfrompartition{P}$ is symmetric.
-\end{proposition}
-\begin{proof}
- Follows by \cref{symmetric,equivalence_from_partition,notin_emptyset}.
-\end{proof}
-
-\begin{proposition}\label{equivalence_from_partition_transitive}
- Let $P$ be a partition.
- $\equivfrompartition{P}$ is transitive.
-\end{proposition}
-
-\begin{proposition}\label{equivalence_from_partition_is_equivalence}
- Let $P$ be a partition of $A$.
- $\equivfrompartition{P}$ is an equivalence on $A$.
-\end{proposition}
-
-\begin{proposition}\label{equivalence_from_quotient}
- Let $E$ be an equivalence on $A$.
- Then $\equivfrompartition{\quotient{A}{E}} = E$.
-\end{proposition}
-\begin{proof}
- Follows by set extensionality.
-\end{proof}
-
-\begin{proposition}\label{partition_eq_quotient_by_equivalence_from_partition}
- Let $P$ be a partition of $A$.
- Then $\quotient{A}{\equivfrompartition{P}} = P$.
-\end{proposition}
-\begin{proof}
- Follows by set extensionality.
-\end{proof}
+%
+%\begin{definition}\label{equivalence_from_partition}
+% $\equivfrompartition{P} = \{(a, b)\mid a\in A, b\in A\mid \exists C\in P.\ a, b\in C\}$.
+%\end{definition}
+%
+%\begin{proposition}\label{equivalence_from_partition_intro}
+% Let $P$ be a partition of $A$.
+% Let $a,b\in A$.
+% Suppose $a,b\in C\in P$.
+% Then $a\mathrel{\equivfrompartition{P}} b$.
+%\end{proposition}
+%
+%\begin{proposition}\label{equivalence_from_partition_reflexive}
+% Let $P$ be a partition of $A$.
+% $\equivfrompartition{P}$ is reflexive on $A$.
+%\end{proposition}
+%
+%\begin{proposition}\label{equivalence_from_partition_symmetric}
+% Let $P$ be a partition.
+% $\equivfrompartition{P}$ is symmetric.
+%\end{proposition}
+%\begin{proof}
+% Follows by \cref{symmetric,equivalence_from_partition,notin_emptyset}.
+%\end{proof}
+%
+%\begin{proposition}\label{equivalence_from_partition_transitive}
+% Let $P$ be a partition.
+% $\equivfrompartition{P}$ is transitive.
+%\end{proposition}
+%
+%\begin{proposition}\label{equivalence_from_partition_is_equivalence}
+% Let $P$ be a partition of $A$.
+% $\equivfrompartition{P}$ is an equivalence on $A$.
+%\end{proposition}
+%
+%\begin{proposition}\label{equivalence_from_quotient}
+% Let $E$ be an equivalence on $A$.
+% Then $\equivfrompartition{\quotient{A}{E}} = E$.
+%\end{proposition}
+%\begin{proof}
+% Follows by set extensionality.
+%\end{proof}
+%
+%\begin{proposition}\label{partition_eq_quotient_by_equivalence_from_partition}
+% Let $P$ be a partition of $A$.
+% Then $\quotient{A}{\equivfrompartition{P}} = P$.
+%\end{proposition}
+%\begin{proof}
+% Follows by set extensionality.
+%\end{proof}
+% \ No newline at end of file