diff options
Diffstat (limited to 'library/set')
| -rw-r--r-- | library/set/filter.tex | 64 | ||||
| -rw-r--r-- | library/set/powerset.tex | 16 |
2 files changed, 70 insertions, 10 deletions
diff --git a/library/set/filter.tex b/library/set/filter.tex index 2797d86..4537b81 100644 --- a/library/set/filter.tex +++ b/library/set/filter.tex @@ -3,6 +3,8 @@ \section{Filters} +\subsection{Definition and basic properties of filters} + \begin{abbreviation}\label{upwardclosed} $F$ is upward-closed in $S$ iff for all $A, B$ such that $A\subseteq B\subseteq S$ and $A\in F$ we have $B\in F$. @@ -11,21 +13,71 @@ \begin{definition}\label{filter} $F$ is a filter on $S$ iff $F$ is a family of subsets of $S$ - and $S$ is inhabited and $S\in F$ and $\emptyset\notin F$ and $F$ is closed under binary intersections and $F$ is upward-closed in $S$. \end{definition} +\begin{proposition}\label{filter_ext_complement} + Let $F, G$ be filters on $S$. + Suppose for all $A\subseteq S$ we have $S\setminus A\in F$ iff $S\setminus A\in G$. + Then $F = G$. +\end{proposition} +\begin{proof} + Follows by set extensionality. +\end{proof} + +\begin{proposition}\label{filter_inter_in_iff} + Let $F$ be a filter on $S$. + Suppose $A, B\subseteq S$. + Then $A\inter B\in F$ iff $A, B\in F$. +\end{proposition} +\begin{proof} + We have $A\inter B\subseteq A, B$. + Follows by \cref{filter}. +\end{proof} + +\begin{proposition}\label{filter_setminus_in} + Let $F$ be a filter on $S$. + Suppose $A\in F$. + Suppose $B\subseteq S$ and $S\setminus B\in F$. + Then $A\setminus B\in F$. +\end{proposition} +\begin{proof} + We have $A\subseteq S$. + Thus $A\setminus B = A\inter (S\setminus B)$ by \cref{setminus_eq_inter_complement}. + Now $S\setminus B\subseteq S$. + Follows by \cref{filter_inter_in_iff}. +\end{proof} + +\begin{proposition}\label{filter_in_iff_exists_subset} + Let $F$ be a filter on $S$. + Suppose $B\subseteq S$. + Then $B\in F$ iff there exists $A\subseteq B$ such that $A\in F$. +\end{proposition} + + +\subsection{Principal filters over a set} + \begin{definition}\label{principalfilter} $\principalfilter{S}{A} = \{X\in\pow{S}\mid A\subseteq X\}$. \end{definition} -%\begin{proposition}\label{principalfilter_domain_inhabited} -% Suppose $F$ is a filter on $S$. -% Then $S$ is inhabited. -%\end{proposition} +\begin{proposition}\label{principalfilter_iff} + Suppose $A, B\subseteq S$. + Then $B\in\principalfilter{S}{A}$ iff $A\subseteq B$. +\end{proposition} + +\begin{proposition}\label{principalfilter_bottom} + Suppose $A\subseteq S$. + Then $A\in\principalfilter{S}{A}$. +\end{proposition} + +\begin{proposition}\label{principalfilter_top} + Suppose $A\subseteq S$. + Then $S\in\principalfilter{S}{A}$. +\end{proposition} \begin{proposition}\label{principalfilter_is_filter} Suppose $A\subseteq S$. @@ -55,8 +107,6 @@ Suppose $X\notin\principalfilter{S}{A}$. Then $A\not\subseteq X$. \end{proposition} -\begin{proof} -\end{proof} \begin{definition}\label{maximalfilter} $F$ is a maximal filter on $S$ iff diff --git a/library/set/powerset.tex b/library/set/powerset.tex index 80da4cb..ec5866f 100644 --- a/library/set/powerset.tex +++ b/library/set/powerset.tex @@ -6,8 +6,7 @@ The powerset of $X$ denotes $\pow{X}$. \end{abbreviation} -\begin{axiom}% -\label{pow_iff} +\begin{axiom}\label{pow_iff} $B\in\pow{A}$ iff $B\subseteq A$. \end{axiom} @@ -47,6 +46,17 @@ Follows by \cref{pow_iff,unions_subseteq_of_powerset_is_subseteq}. \end{proof} + +\begin{proposition}\label{inter_powerset} + Let $A,B\in\pow{C}$. + Then $A\inter B\in\pow{C}$. +\end{proposition} +\begin{proof} + We have $A,B\subseteq C$ by \cref{pow_iff}. + $A\inter B\subseteq C$ by \cref{inter_subseteq}. + Follows by \cref{pow_iff}. +\end{proof} + \begin{proposition}\label{unions_powerset} $\unions{\pow{A}} = A$. \end{proposition} @@ -76,7 +86,7 @@ % LATER %\begin{proposition}\label{powerset_cons} -% Then $\pow{\cons{b}{A}} = \pow{A}\union \{\cons{b}{B}\mid B\in\pow{A}\}$. +% $\pow{\cons{b}{A}} = \pow{A}\union \{\cons{b}{B}\mid B\in\pow{A}\}$. %\end{proposition} \begin{proposition}\label{powerset_union_subseteq} |
