summaryrefslogtreecommitdiff
path: root/library/topology/metric-space.tex
diff options
context:
space:
mode:
Diffstat (limited to 'library/topology/metric-space.tex')
-rw-r--r--library/topology/metric-space.tex77
1 files changed, 0 insertions, 77 deletions
diff --git a/library/topology/metric-space.tex b/library/topology/metric-space.tex
index 1c6a0ca..bcc5b8c 100644
--- a/library/topology/metric-space.tex
+++ b/library/topology/metric-space.tex
@@ -21,44 +21,16 @@
-%\begin{definition}\label{induced_topology}
-% $O$ is the induced topology of $d$ in $M$ iff
-% $O \subseteq \pow{M}$ and
-% $d$ is a metric on $M$ and
-% for all $x,r,A,B,C$
-% such that $x \in M$ and $r \in \reals$ and $A,B \in O$ and $C$ is a family of subsets of $O$
-% we have $\openball{r}{x}{d} \in O$ and $\unions{C} \in O$ and $A \inter B \in O$.
-%\end{definition}
-
-%\begin{definition}
-% $\projcetfirst{A} = \{a \mid \exists x \in X \text{there exist $x \i } \}$
-%\end{definition}
-
\begin{definition}\label{set_of_balls}
$\balls{d}{M} = \{ O \in \pow{M} \mid \text{there exists $x,r$ such that $r \in \reals$ and $x \in M$ and $O = \openball{r}{x}{d}$ } \}$.
\end{definition}
-%\begin{definition}\label{toindsas}
-% $\metricopens{d}{M} = \{O \in \pow{M} \mid \text{
-% $d$ is a metric on $M$ and
-% for all $x,r,A,B,C$
-% such that $x \in M$ and $r \in \reals$ and $A,B \in O$ and $C$ is a family of subsets of $O$
-% we have $\openball{r}{x}{d} \in O$ and $\unions{C} \in O$ and $A \inter B \in O$.
-% } \}$.
-%
-%\end{definition}
-
\begin{definition}\label{metricopens}
$\metricopens{d}{M} = \genOpens{\balls{d}{M}}{M}$.
\end{definition}
-\begin{theorem}
- Let $d$ be a metric on $M$.
- $M$ is a topological space.
-\end{theorem}
-
@@ -93,13 +65,6 @@
\end{lemma}
-%\begin{definition}\label{lenght_of_interval} %TODO: take minus if its implemented
-% $\lenghtinterval{x}{y} = r$
-%\end{definition}
-
-
-
-
\begin{lemma}\label{metric_implies_topology}
@@ -108,45 +73,3 @@
\end{lemma}
-
-
-
-%\begin{struct}\label{metric_space}
-% A metric space $M$ is a onesorted structure equipped with
-% \begin{enumerate}
-% \item $\metric$
-% \end{enumerate}
-% such that
-% \begin{enumerate}
-% \item \label{metric_space_d} $\metric[M]$ is a function from $M \times M$ to $\reals$.
-% \item \label{metric_space_distence_of_a_point} $\metric[M](x,x) = \zero$.
-% \item \label{metric_space_positiv} for all $x,y \in M$ if $x \neq y$ then $\zero < \metric[M](x,y)$.
-% \item \label{metric_space_symetrie} $\metric[M](x,y) = \metric[M](y,x)$.
-% \item \label{metric_space_triangle_equation} for all $x,y,z \in M$ $\metric[M](x,y) < \metric[M](x,z) + \metric[M](z,y)$ or $\metric[M](x,y) = \metric[M](x,z) + \metric[M](z,y)$.
-% \item \label{metric_space_topology} $M$ is a topological space.
-% \item \label{metric_space_opens} for all $x \in M$ for all $r \in \reals$ $\{z \in M \mid \metric[M](x,z) < r\} \in \opens$.
-% \end{enumerate}
-%\end{struct}
-
-%\begin{definition}\label{open_ball}
-% $\openball{r}{x}{M} = \{z \in M \mid \metric(x,z) < r\}$.
-%\end{definition}
-
-%\begin{proposition}\label{open_ball_is_open}
-% Let $M$ be a metric space,let $r \in \reals $, let $x$ be an element of $M$.
-% Then $\openball{r}{x}{M} \in \opens[M]$.
-%\end{proposition}
-
-
-
-
-
-
-%TODO: - Basis indudiert topology lemma
-% - Offe Bälle sind basis
-
-% Was danach kommen soll bleibt offen, vll buch oder in proof wiki
-% Trennungsaxiom,
-
-% Notaionen aufräumen damit das gut gemercht werden kann.
-