diff options
Diffstat (limited to 'library/topology/metric-space.tex')
| -rw-r--r-- | library/topology/metric-space.tex | 134 |
1 files changed, 134 insertions, 0 deletions
diff --git a/library/topology/metric-space.tex b/library/topology/metric-space.tex new file mode 100644 index 0000000..8ec83f7 --- /dev/null +++ b/library/topology/metric-space.tex @@ -0,0 +1,134 @@ +\import{topology/topological-space.tex} +\import{numbers.tex} +\import{function.tex} +\import{set/powerset.tex} + +\section{Metric Spaces} + +\begin{definition}\label{metric} + $f$ is a metric on $M$ iff $f$ is a function from $M \times M$ to $\reals$ and + for all $x,y,z \in M$ we have + $f(x,x) = \zero$ and + $f(x,y) = f(y,x)$ and + $f(x,y) \leq f(x,z) + f(z,y)$ and + if $x \neq y$ then $\zero < f(x,y)$. +\end{definition} + +\begin{definition}\label{open_ball} + $\openball{r}{x}{f} = \{z \in M \mid \text{ $f$ is a metric on $M$ and $f(x,z) < r$ } \}$. +\end{definition} + + + +\begin{definition}\label{induced_topology} + $O$ is the induced topology of $d$ in $M$ iff + $O \subseteq \pow{M}$ and + $d$ is a metric on $M$ and + for all $x,r,A,B,C$ + such that $x \in M$ and $r \in \reals$ and $A,B \in O$ and $C$ is a family of subsets of $O$ + we have $\openball{r}{x}{d} \in O$ and $\unions{C} \in O$ and $A \inter B \in O$. +\end{definition} + +%\begin{definition} +% $\projcetfirst{A} = \{a \mid \exists x \in X \text{there exist $x \i } \}$ +%\end{definition} + +\begin{definition}\label{set_of_balls} + $\balls{d}{M} = \{ O \in \pow{M} \mid \text{there exists $x,r$ such that $r \in \reals$ and $x \in M$ we have $O = \openball{r}{x}{d}$ } \}$. +\end{definition} + + +\begin{definition}\label{toindsas} + $\metricopens{d}{M} = \{O \in \pow{M} \mid \text{ + $d$ is a metric on $M$ and + for all $x,r,A,B,C$ + such that $x \in M$ and $r \in \reals$ and $A,B \in O$ and $C$ is a family of subsets of $O$ + we have $\openball{r}{x}{d} \in O$ and $\unions{C} \in O$ and $A \inter B \in O$. + } \}$. + +\end{definition} + +\begin{theorem}\label{metric_induce_a_topology} + + + +\end{theorem} + + + + +%TODO: \metric_opens{d} = {hier die construction für topology} DONE. +%TODO: Die induzierte topology definieren und dann in struct verwenden. + + +\begin{struct}\label{metric_space} + A metric space $M$ is a onesorted structure equipped with + \begin{enumerate} + \item $\metric$ + \end{enumerate} + such that + \begin{enumerate} + \item \label{metric_space_metric} $\metric[M]$ is a metric on $M$. + \item \label{metric_space_topology} $M$ is a topological space. + \item \label{metric_space_opens} for all $x \in M$ for all $r \in \reals$ $\openball{r}{x}{\metric[M]} \in \opens[M]$. + \end{enumerate} +\end{struct} + +\begin{abbreviation}\label{descriptive_syntax_for_openball1} + $U$ is an open ball in $M$ of $x$ with radius $r$ iff $x \in M$ and $M$ is a metric space and $U = \openball{r}{x}{\metric[M]}$. +\end{abbreviation} + +\begin{abbreviation}\label{descriptive_syntax_for_openball2} + $U$ is an open ball in $M$ iff there exist $x \in M$ such that there exist $r \in \reals$ such that $U$ is an open ball in $M$ of $x$ with radius $r$. +\end{abbreviation} + +\begin{lemma}\label{union_of_open_balls_is_open} + Let $M$ be a metric space. + For all $U,V \subseteq M$ if $U$, $V$ are open balls in $M$ then $U \union V$ is open in $M$. +\end{lemma} + + +%\begin{definition}\label{lenght_of_interval} %TODO: take minus if its implemented +% $\lenghtinterval{x}{y} = r$ +%\end{definition} + + + + + + +\begin{lemma}\label{metric_implies_topology} + Let $M$ be a set, and let $f$ be a metric on $M$. + Then $M$ is a metric space. +\end{lemma} + + + + + +%\begin{struct}\label{metric_space} +% A metric space $M$ is a onesorted structure equipped with +% \begin{enumerate} +% \item $\metric$ +% \end{enumerate} +% such that +% \begin{enumerate} +% \item \label{metric_space_d} $\metric[M]$ is a function from $M \times M$ to $\reals$. +% \item \label{metric_space_distence_of_a_point} $\metric[M](x,x) = \zero$. +% \item \label{metric_space_positiv} for all $x,y \in M$ if $x \neq y$ then $\zero < \metric[M](x,y)$. +% \item \label{metric_space_symetrie} $\metric[M](x,y) = \metric[M](y,x)$. +% \item \label{metric_space_triangle_equation} for all $x,y,z \in M$ $\metric[M](x,y) < \metric[M](x,z) + \metric[M](z,y)$ or $\metric[M](x,y) = \metric[M](x,z) + \metric[M](z,y)$. +% \item \label{metric_space_topology} $M$ is a topological space. +% \item \label{metric_space_opens} for all $x \in M$ for all $r \in \reals$ $\{z \in M \mid \metric[M](x,z) < r\} \in \opens$. +% \end{enumerate} +%\end{struct} + +%\begin{definition}\label{open_ball} +% $\openball{r}{x}{M} = \{z \in M \mid \metric(x,z) < r\}$. +%\end{definition} + +%\begin{proposition}\label{open_ball_is_open} +% Let $M$ be a metric space,let $r \in \reals $, let $x$ be an element of $M$. +% Then $\openball{r}{x}{M} \in \opens[M]$. +%\end{proposition} + |
