diff options
Diffstat (limited to 'library/topology/order-topology.tex')
| -rw-r--r-- | library/topology/order-topology.tex | 33 |
1 files changed, 33 insertions, 0 deletions
diff --git a/library/topology/order-topology.tex b/library/topology/order-topology.tex new file mode 100644 index 0000000..2dd026d --- /dev/null +++ b/library/topology/order-topology.tex @@ -0,0 +1,33 @@ +\import{topology/topological-space.tex} +\import{order/order.tex} + +\section{Order Topology} + +\begin{abbreviation}\label{open_interval} + $z \in \oointervalof{x}{y}$ iff $x \mathrel{R} y$ and $x \mathrel{R} z$ and $z \mathrel{R} y$. + %$\oointervalof{x}{y}{X} = \{ z \mid x \in X, y \in X, z \in X x \mathrel{R} y \wedge x \mathrel{R} z \wedge z \mathrel{R} y\}$. +\end{abbreviation} + +\begin{struct}\label{order_topology} + A ordertopology space $X$ is a onesorted structure equipped with + \begin{enumerate} + \item $<$ + \end{enumerate} + such that + \begin{enumerate} + \item \label{order_topology_1} $<$ is a strict order on $X$ + \item \label{order_topology_2} + \item \label{order_topology_3} + \item \label{order_topology_4} + \item \label{order_topology} + \item \label{order_topology} + \item \label{order_topology} + \end{enumerate} +\end{struct} + + + +%\begin{definition}\label{order_topology} +% $X$ has the order topology iff for all $x,y \in X$ $X$ has a strict order $R$ and $\oointervalof{x}{y}{X} \in \opens[X]$ and $X$ is a topological space. +% %$O$ is the order Topology on $X$ iff for all $x,y \in X$ $X$ has a strict order $R$ and $(x,y) \in O$ and $O$ is . +%\end{definition} |
