summaryrefslogtreecommitdiff
path: root/library/topology/separation.tex
diff options
context:
space:
mode:
Diffstat (limited to 'library/topology/separation.tex')
-rw-r--r--library/topology/separation.tex80
1 files changed, 73 insertions, 7 deletions
diff --git a/library/topology/separation.tex b/library/topology/separation.tex
index f70cb50..3268bb9 100644
--- a/library/topology/separation.tex
+++ b/library/topology/separation.tex
@@ -73,14 +73,29 @@
\begin{proposition}\label{teeone_implies_singletons_closed}
Let $X$ be a \teeone-space.
- Then for all $x\in\carrier[X]$ we have $\{x\}$ is closed in $X$.
+ Assume $x \in \carrier[X]$.
+ Then $\{x\}$ is closed in $X$.
\end{proposition}
\begin{proof}
- Omitted.
- % TODO
- % Choose for every y distinct from x and open subset U_y containing y but not x.
- % The union U of all the U_y is open.
- % {x} is the complement of U in \carrier[X].
+ Let $V = \{ U \in \opens[X] \mid x \notin U\}$.
+ For all $y \in \carrier[X]$ such that $x \neq y$ there exist $U \in \opens[X]$ such that $x \notin U \ni y$.
+ For all $y \in \carrier[X]$ such that $y \neq x$ there exists $U \in V$ such that $y \in U$.
+
+ $\unions{V} \in \opens[X]$.
+ For all $y \in \carrier[X]$ such that $x \neq y$ we have $y \in \unions{V}$.
+ We show that $\carrier[X] \setminus \{x\} = \unions{V}$.
+ \begin{subproof}
+ We show that for all $y \in \carrier[X] \setminus \{x\}$ we have $y \in \unions{V}$.
+ \begin{subproof}
+ Fix $y \in \carrier[X] \setminus \{x\}$.
+ $y \neq x$.
+ $y \in \carrier[X]$.
+ $y \in \unions{V}$.
+ \end{subproof}
+ For all $y \in \unions{V}$ we have $y \notin \{x\}$.
+ For all $y \in \unions{V}$ we have $y \in \carrier[X] \setminus \{x\}$.
+ Follows by set extensionality.
+ \end{subproof}
\end{proof}
%
% Conversely, if \{x\} is open, then for any y distinct from x we can use
@@ -120,5 +135,56 @@
Then $X$ is a \teeone-space.
\end{proposition}
\begin{proof}
- Omitted. % TODO
+ We show that for all $x,y\in\carrier[X]$ such that $x\neq y$
+ there exist $U, V\in\opens[X]$ such that
+ $U\ni x\notin V$ and $V\ni y\notin U$.
+ \begin{subproof}
+ $X$ is hausdorff.
+ For all $x,y\in\carrier[X]$ such that $x\neq y$
+ there exist $U, V\in\opens[X]$ such that
+ $x\in U$ and $y\in V$ and $U$ is disjoint from $V$.
+ \end{subproof}
+\end{proof}
+
+\begin{definition}\label{regular}
+ $X$ is regular iff for all $C,p$ such that $p \in \carrier[X]$ and $p \notin C \in \closeds{X}$ we have there exists $U,C \in \opens[X]$ such that $p \in U$ and $C \subseteq V$ and $U \inter V = \emptyset$.
+\end{definition}
+
+\begin{definition}\label{regular_space}
+ $X$ is a regular space iff $X$ is a topological space and $X$ is regular.
+\end{definition}
+
+
+\begin{definition}\label{teethree}
+ $X$ is \teethree\ iff $X$ is regular and $X$ is \teezero\ .
+\end{definition}
+
+\begin{definition}\label{teethree_space}
+ $X$ is a \teethree-space iff $X$ is a topological space and $X$ is \teethree\ .
+\end{definition}
+
+\begin{proposition}\label{teethree_space_is_teetwo_space}
+ Let $X$ be a \teethree-space.
+ Then $X$ is a \teetwo-space.
+\end{proposition}
+\begin{proof}
+ For all $x,y \in \carrier[X]$ such that $x \neq y$ we have $x \notin \{y\}$.
+ It suffices to show that $X$ is hausdorff.
+ It suffices to show that for all $x \in \carrier[X]$ we have for all $y \in \carrier[X]$ such that $y \neq x$ we have there exist $U,V \in \opens[X]$ such that $x\in U$ and $y \in V$ and $U$ is disjoint from $V$.
+ Fix $x \in \carrier[X]$.
+ It suffices to show that for all $y \in \carrier[X]$ such that $y \neq x$ we have there exist $U,V \in \opens[X]$ such that $x\in U$ and $y \in V$ and $U$ is disjoint from $V$.
+ Fix $y \in \carrier[X]$.
+
+ %There exist $U' \in \opens[X]$ such that $x\in U'\not\ni y$ or $x\notin U'\ni y$ by \cref{}.
+ %There exist $C \in \closeds{X}$ such that $y \in C \not\ni X$.
+ We show that there exist $U,V,C$ such that $U,V \in \opens[X]$ and $C\in \closeds{X}$ and $x \in U$ and $y \in C \subseteq V$ and $U$ is disjoint from $V$.
+ \begin{subproof}
+ Omitted.
+ \end{subproof}
+ $y \in V$.
+ Follows by assumption.
\end{proof}
+
+% for all $x,y\in\carrier[X]$ such that $x\neq y$
+% there exist $U, V\in\opens[X]$ such that
+% $x\in U$ and $y\in V$ and $U$ is disjoint from $V$. \ No newline at end of file