diff options
Diffstat (limited to 'library/topology/topological-space.tex')
| -rw-r--r-- | library/topology/topological-space.tex | 17 |
1 files changed, 14 insertions, 3 deletions
diff --git a/library/topology/topological-space.tex b/library/topology/topological-space.tex index 8da29d3..f8bcb93 100644 --- a/library/topology/topological-space.tex +++ b/library/topology/topological-space.tex @@ -1,5 +1,6 @@ \import{set.tex} \import{set/powerset.tex} +\import{set/cons.tex} \section{Topological spaces} @@ -67,7 +68,8 @@ such that $a\in U\subseteq A$. \end{proposition} \begin{proof} - Take $U\in\interiors{A}{X}$ such that $a\in U$. + Omitted. + %Take $U\in\interiors{A}{X}$ such that $a\in U$. \end{proof} \begin{proposition}[Interior]\label{interior_elem_iff} @@ -175,6 +177,9 @@ Suppose $B$ is closed in $X$. Then $A \setminus B$ is open in $X$. \end{proposition} +\begin{proof} + Follows by \cref{setminus_eq_emptyset_iff_subseteq,is_closed_in,opens_inter,inter_comm_left,setminus_union,inter_assoc,inter_setminus,inter_lower_left,inter_lower_right,setminus_subseteq,double_complement,setminus_setminus,setminus_eq_inter_complement,setminus_self,setminus_inter,union_comm,emptyset_subseteq,setminus_partition}. +\end{proof} \begin{definition}[Closed sets]\label{closeds} $\closeds{X} = \{ A\in\pow{\carrier[X]}\mid\text{$A$ is closed in $X$}\}$. @@ -297,7 +302,8 @@ \end{proposition} \begin{proof} It suffices to show that for all $x \in (\carrier[X] \setminus \closure{(\carrier[X]\setminus A)}{X})$ we have $x \in A$. - If $x \in \carrier[X]\setminus A$ then $x \in \closure{(\carrier[X]\setminus A)}{X}$. + If $x \in \carrier[X]\setminus A$ then $x \in \closure{(\carrier[X]\setminus A)}{X}$ by \cref{set_is_subseteq_to_closure_of_the_set,setminus_subseteq,elem_subseteq,setminus}. + Follows by \cref{subseteq_setminus_cons_elim,cons_absorb,double_complement_union,union_as_unions,set_is_subseteq_to_closure_of_the_set,setminus_subseteq,setminus_intro,closure,setminus_elim_left}. \end{proof} \begin{proposition}\label{complement_of_closed_is_open} @@ -381,6 +387,7 @@ Take $U$ such that $U \in F$. Let $F'' = F \setminus \{U\}$. There exist $U' \in F'$ such that $U' = \carrier[X] \setminus U$. + Omitted. \caseOf{$\inters{F} \neq \emptyset$.} Fix $a \in \carrier[X] \setminus (\unions{F'})$. @@ -389,7 +396,7 @@ $a \notin \unions{F'}$. For all $A \in F'$ we have $a \notin A$. For all $A \in F'$ we have $a \in (\carrier[X] \setminus A)$. - For all $A \in F'$ there exists $Y \in F$ such that $Y = (\carrier[X] \setminus A)$. + For all $A \in F'$ there exists $Y \in F$ such that $Y = (\carrier[X] \setminus A)$ by \cref{setminus_setminus,inter_absorb_supseteq_left,pow_iff,subseteq}. For all $Y \in F $ there exists $A \in F'$ such that $a \in Y = (\carrier[X] \setminus A)$. For all $Y \in F$ we have $a \in Y$. Therefore $a \in \inters{F}$. @@ -522,3 +529,7 @@ \begin{definition}\label{neighbourhoods} $\neighbourhoods{x}{X} = \{N\in\pow{\carrier[X]} \mid \exists U\in\opens[X]. x\in U\subseteq N\}$. \end{definition} + +\begin{definition}\label{neighbourhoods_set} + $\neighbourhoodsSet{x}{X} = \{N\in\pow{\carrier[X]} \mid \exists U\in\opens[X]. x\subseteq U\subseteq N\}$. +\end{definition} |
