summaryrefslogtreecommitdiff
path: root/library/topology/urysohn.tex
diff options
context:
space:
mode:
Diffstat (limited to 'library/topology/urysohn.tex')
-rw-r--r--library/topology/urysohn.tex6
1 files changed, 6 insertions, 0 deletions
diff --git a/library/topology/urysohn.tex b/library/topology/urysohn.tex
index e1fa924..17e2911 100644
--- a/library/topology/urysohn.tex
+++ b/library/topology/urysohn.tex
@@ -61,6 +61,11 @@ The first tept will be a formalisation of chain constructions.
\end{enumerate}
\end{struct}
+% Eine folge ist ein Funktion mit domain \subseteq Ordinal zahlen
+
+
+
+
\begin{definition}\label{cahin_of_subsets}
$C$ is a chain of subsets iff
$C$ is a sequence and for all $n,m \in \indexset[C]$ such that $n < m$ we have $\index[C](n) \subseteq \index[C](m)$.
@@ -237,6 +242,7 @@ The first tept will be a formalisation of chain constructions.
for all $x \in \carrier[X]$ we have $\{x\}$ is closed in $X$.
\end{axiom}
+
\begin{lemma}\label{urysohn_set_in_between}
Let $X$ be a urysohn space.
Suppose $A,B \in \closeds{X}$.