summaryrefslogtreecommitdiff
path: root/library/topology/urysohn.tex
diff options
context:
space:
mode:
Diffstat (limited to 'library/topology/urysohn.tex')
-rw-r--r--library/topology/urysohn.tex515
1 files changed, 258 insertions, 257 deletions
diff --git a/library/topology/urysohn.tex b/library/topology/urysohn.tex
index 17e2911..ff6a231 100644
--- a/library/topology/urysohn.tex
+++ b/library/topology/urysohn.tex
@@ -51,13 +51,14 @@ The first tept will be a formalisation of chain constructions.
\begin{struct}\label{sequence}
A sequence $X$ is a onesorted structure equipped with
\begin{enumerate}
- \item $\index$
- \item $\indexset$
+ \item $\indexx$
+ \item $\indexxset$
+
\end{enumerate}
such that
\begin{enumerate}
- \item\label{indexset_is_subset_naturals} $\indexset[X] \subseteq \naturals$.
- \item\label{index_is_bijection} $\index[X]$ is a bijection from $\indexset[X]$ to $\carrier[X]$.
+ \item\label{indexset_is_subset_naturals} $\indexxset[X] \subseteq \naturals$.
+ \item\label{index_is_bijection} $\indexx[X]$ is a bijection from $\indexxset[X]$ to $\carrier[X]$.
\end{enumerate}
\end{struct}
@@ -68,13 +69,13 @@ The first tept will be a formalisation of chain constructions.
\begin{definition}\label{cahin_of_subsets}
$C$ is a chain of subsets iff
- $C$ is a sequence and for all $n,m \in \indexset[C]$ such that $n < m$ we have $\index[C](n) \subseteq \index[C](m)$.
+ $C$ is a sequence and for all $n,m \in \indexxset[C]$ such that $n < m$ we have $\indexx[C](n) \subseteq \indexx[C](m)$.
\end{definition}
\begin{definition}\label{chain_of_n_subsets}
$C$ is a chain of $n$ subsets iff
- $C$ is a chain of subsets and $n \in \indexset[C]$
- and for all $m \in \naturals$ such that $m \leq n$ we have $m \in \indexset[C]$.
+ $C$ is a chain of subsets and $n \in \indexxset[C]$
+ and for all $m \in \naturals$ such that $m \leq n$ we have $m \in \indexxset[C]$.
\end{definition}
@@ -133,18 +134,18 @@ The first tept will be a formalisation of chain constructions.
\item \label{staircase_domain} $\dom{f}$ is a topological space.
\item \label{staricase_def_chain} $C$ is a chain of subsets.
\item \label{staircase_chain_is_in_domain} for all $x \in C$ we have $x \subseteq \dom{f}$.
- \item \label{staircase_behavoir_index_zero} $f(\index[C](1))= 1$.
+ \item \label{staircase_behavoir_index_zero} $f(\indexx[C](1))= 1$.
\item \label{staircase_behavoir_index_n} $f(\dom{f}\setminus \unions{C}) = \zero$.
- \item \label{staircase_chain_indeset} There exist $n$ such that $\indexset[C] = \seq{\zero}{n}$.
- \item \label{staircase_behavoir_index_arbetrray} for all $n \in \indexset[C]$
- such that $n \neq \zero$ we have $f(\index[C](n) \setminus \index[C](n-1)) = \rfrac{n}{ \max{\indexset[C]} }$.
+ \item \label{staircase_chain_indeset} There exist $n$ such that $\indexxset[C] = \seq{\zero}{n}$.
+ \item \label{staircase_behavoir_index_arbetrray} for all $n \in \indexxset[C]$
+ such that $n \neq \zero$ we have $f(\indexx[C](n) \setminus \indexx[C](n-1)) = \rfrac{n}{ \max{\indexxset[C]} }$.
\end{enumerate}
\end{struct}
\begin{definition}\label{legal_staircase}
$f$ is a legal staircase function iff
$f$ is a staircase function and
- for all $n,m \in \indexset[\chain[f]]$ such that $n \leq m$ we have $f(\index[\chain[f]](n)) \leq f(\index[\chain[f]](m))$.
+ for all $n,m \in \indexxset[\chain[f]]$ such that $n \leq m$ we have $f(\indexx[\chain[f]](n)) \leq f(\indexx[\chain[f]](m))$.
\end{definition}
\begin{abbreviation}\label{urysohnspace}
@@ -159,23 +160,23 @@ The first tept will be a formalisation of chain constructions.
$C$ is a urysohnchain in $X$ of cardinality $k$ iff %<---- TODO: cardinality unused!
$C$ is a chain of subsets and
for all $A \in C$ we have $A \subseteq X$ and
- for all $n,m \in \indexset[C]$ such that $n < m$ we have $\closure{\index[C](n)}{X} \subseteq \interior{\index[C](m)}{X}$.
+ for all $n,m \in \indexxset[C]$ such that $n < m$ we have $\closure{\indexx[C](n)}{X} \subseteq \interior{\indexx[C](m)}{X}$.
\end{definition}
\begin{definition}\label{urysohnchain_without_cardinality}
$C$ is a urysohnchain in $X$ iff
$C$ is a chain of subsets and
for all $A \in C$ we have $A \subseteq X$ and
- for all $n,m \in \indexset[C]$ such that $n < m$ we have $\closure{\index[C](n)}{X} \subseteq \interior{\index[C](m)}{X}$.
+ for all $n,m \in \indexxset[C]$ such that $n < m$ we have $\closure{\indexx[C](n)}{X} \subseteq \interior{\indexx[C](m)}{X}$.
\end{definition}
\begin{abbreviation}\label{infinte_sequence}
- $S$ is a infinite sequence iff $S$ is a sequence and $\indexset[S]$ is infinite.
+ $S$ is a infinite sequence iff $S$ is a sequence and $\indexxset[S]$ is infinite.
\end{abbreviation}
\begin{definition}\label{infinite_product}
$X$ is the infinite product of $Y$ iff
- $X$ is a infinite sequence and for all $i \in \indexset[X]$ we have $\index[X](i) = Y$.
+ $X$ is a infinite sequence and for all $i \in \indexxset[X]$ we have $\indexx[X](i) = Y$.
\end{definition}
\begin{definition}\label{refinmant}
@@ -289,9 +290,9 @@ The first tept will be a formalisation of chain constructions.
Suppose $A \inter B$ is empty.
Then there exist $U$
such that $\carrier[U] = \{A,(\carrier[X] \setminus B)\}$
- and $\indexset[U]= \{\zero, 1\}$
- and $\index[U](\zero) = A$
- and $\index[U](1) = (\carrier[X] \setminus B)$.
+ and $\indexxset[U]= \{\zero, 1\}$
+ and $\indexx[U](\zero) = A$
+ and $\indexx[U](1) = (\carrier[X] \setminus B)$.
%$U$ is a urysohnchain in $X$.
\end{proposition}
\begin{proof}
@@ -310,12 +311,12 @@ The first tept will be a formalisation of chain constructions.
%
% We show that $U$ is a chain of subsets.
% \begin{subproof}
- % For all $n \in \indexset[U]$ we have $n = \zero \lor n = 1$.
- % It suffices to show that for all $n \in \indexset[U]$ we have
- % for all $m \in \indexset[U]$ such that
- % $n < m$ we have $\index[U](n) \subseteq \index[U](m)$.
- % Fix $n \in \indexset[U]$.
- % Fix $m \in \indexset[U]$.
+ % For all $n \in \indexxset[U]$ we have $n = \zero \lor n = 1$.
+ % It suffices to show that for all $n \in \indexxset[U]$ we have
+ % for all $m \in \indexxset[U]$ such that
+ % $n < m$ we have $\indexx[U](n) \subseteq \indexx[U](m)$.
+ % Fix $n \in \indexxset[U]$.
+ % Fix $m \in \indexxset[U]$.
% \begin{byCase}
% \caseOf{$n = 1$.} Trivial.
% \caseOf{$n = \zero$.}
@@ -337,8 +338,8 @@ The first tept will be a formalisation of chain constructions.
% \begin{subproof}
% Omitted.
% \end{subproof}
- % We show that for all $n,m \in \indexset[U]$ such that $n < m$ we have
- % $\closure{\index[U](n)}{X} \subseteq \interior{\index[U](m)}{X}$.
+ % We show that for all $n,m \in \indexxset[U]$ such that $n < m$ we have
+ % $\closure{\indexx[U](n)}{X} \subseteq \interior{\indexx[U](m)}{X}$.
% \begin{subproof}
% Omitted.
% \end{subproof}
@@ -352,9 +353,9 @@ The first tept will be a formalisation of chain constructions.
Suppose $A \inter B$ is empty.
Suppose there exist $U$
such that $\carrier[U] = \{A,(\carrier[X] \setminus B)\}$
- and $\indexset[U]= \{\zero, 1\}$
- and $\index[U](\zero) = A$
- and $\index[U](1) = (\carrier[X] \setminus B)$.
+ and $\indexxset[U]= \{\zero, 1\}$
+ and $\indexx[U](\zero) = A$
+ and $\indexx[U](1) = (\carrier[X] \setminus B)$.
Then $U$ is a urysohnchain in $X$.
\end{proposition}
\begin{proof}
@@ -384,9 +385,9 @@ The first tept will be a formalisation of chain constructions.
% U = ( A_{0}, A_{1}, A_{2}, ... , A_{n-1}, A_{n})
% U' = ( A_{0}, A'_{1}, A_{1}, A'_{2}, A_{2}, ... A_{n-1}, A'_{n}, A_{n})
- % Let $m = \max{\indexset[U]}$.
- % For all $n \in (\indexset[U] \setminus \{m\})$ we have there exist $C \subseteq X$
- % such that $\closure{\index[U](n)}{X} \subseteq \interior{C}{X} \subseteq \closure{C}{X} \subseteq \interior{\index[U](n+1)}{X}$.
+ % Let $m = \max{\indexxset[U]}$.
+ % For all $n \in (\indexxset[U] \setminus \{m\})$ we have there exist $C \subseteq X$
+ % such that $\closure{\indexx[U](n)}{X} \subseteq \interior{C}{X} \subseteq \closure{C}{X} \subseteq \interior{\indexx[U](n+1)}{X}$.
%\begin{definition}\label{refinmant}
@@ -408,7 +409,7 @@ The first tept will be a formalisation of chain constructions.
Suppose $U$ is a urysohnchain in $X$ and $U$ has cardinality $k$.
Suppose $k \neq \zero$.
Then there exist $f$ such that $f \in \funs{\carrier[X]}{\intervalclosed{\zero}{1}}$
- and for all $n \in \indexset[U]$ we have for all $x \in \index[U](n)$
+ and for all $n \in \indexxset[U]$ we have for all $x \in \indexx[U](n)$
we have $f(x) = \rfrac{n}{k}$.
\end{proposition}
\begin{proof}
@@ -445,11 +446,11 @@ The first tept will be a formalisation of chain constructions.
\begin{abbreviation}\label{converge}
$s$ converges iff $s$ is a sequence of real numbers
- and $\indexset[s]$ is infinite
+ and $\indexxset[s]$ is infinite
and for all $\epsilon \in \reals$ such that $\epsilon > \zero$ we have
- there exist $N \in \indexset[s]$ such that
- for all $m \in \indexset[s]$ such that $m > N$
- we have $\abs{\index[s](N) - \index[s](m)} < \epsilon$.
+ there exist $N \in \indexxset[s]$ such that
+ for all $m \in \indexxset[s]$ such that $m > N$
+ we have $\abs{\indexx[s](N) - \indexx[s](m)} < \epsilon$.
\end{abbreviation}
@@ -457,9 +458,9 @@ The first tept will be a formalisation of chain constructions.
$x$ is the limit of $s$ iff $s$ is a sequence of real numbers
and $x \in \reals$ and
for all $\epsilon \in \reals$ such that $\epsilon > \zero$
- we have there exist $n \in \indexset[s]$ such that
- for all $m \in \indexset[s]$ such that $m > n$
- we have $\abs{x - \index[s](n)} < \epsilon$.
+ we have there exist $n \in \indexxset[s]$ such that
+ for all $m \in \indexxset[s]$ such that $m > n$
+ we have $\abs{x - \indexx[s](n)} < \epsilon$.
\end{definition}
\begin{proposition}\label{existence_of_limit}
@@ -473,9 +474,9 @@ The first tept will be a formalisation of chain constructions.
\begin{definition}\label{limit_sequence}
$x$ is the limit sequence of $f$ iff
- $x$ is a sequence and $\indexset[x] = \dom{f}$ and
- for all $n \in \indexset[x]$ we have
- $\index[x](n) = f(n)$.
+ $x$ is a sequence and $\indexxset[x] = \dom{f}$ and
+ for all $n \in \indexxset[x]$ we have
+ $\indexx[x](n) = f(n)$.
\end{definition}
\begin{definition}\label{realsminus}
@@ -596,15 +597,15 @@ The first tept will be a formalisation of chain constructions.
\begin{proof}
There exist $\eta$ such that $\carrier[\eta] = \{A, (\carrier[X] \setminus B)\}$
- and $\indexset[\eta] = \{\zero, 1\}$
- and $\index[\eta](\zero) = A$
- and $\index[\eta](1) = (\carrier[X] \setminus B)$ by \cref{urysohnchain_induction_begin}.
+ and $\indexxset[\eta] = \{\zero, 1\}$
+ and $\indexx[\eta](\zero) = A$
+ and $\indexx[\eta](1) = (\carrier[X] \setminus B)$ by \cref{urysohnchain_induction_begin}.
We show that there exist $\zeta$ such that $\zeta$ is a sequence
- and $\indexset[\zeta] = \naturals$
- and $\eta \in \carrier[\zeta]$ and $\index[\zeta](\eta) = \zero$
- and for all $n \in \indexset[\zeta]$ we have $n+1 \in \indexset[\zeta]$
- and $\index[\zeta](n+1)$ is a refinmant of $\index[\zeta](n)$.
+ and $\indexxset[\zeta] = \naturals$
+ and $\eta \in \carrier[\zeta]$ and $\indexx[\zeta](\eta) = \zero$
+ and for all $n \in \indexxset[\zeta]$ we have $n+1 \in \indexxset[\zeta]$
+ and $\indexx[\zeta](n+1)$ is a refinmant of $\indexx[\zeta](n)$.
\begin{subproof}
%Let $\alpha = \{x \in C \mid \exists y \in \alpha. x \refine y \lor x = \eta\}$.
%Let $\beta = \{ (n,x) \mid n \in \naturals \mid \exists m \in \naturals. \exists y \in \alpha. (x \in \alpha) \land ((x \refine y \land m = n+1 )\lor ((n,x) = (\zero,\eta)))\}$.
@@ -614,7 +615,7 @@ The first tept will be a formalisation of chain constructions.
%$\dom{\beta} = \naturals$.
%$\ran{\beta} = \alpha$.
%$\beta \in \funs{\naturals}{\alpha}$.
- %Take $\zeta$ such that $\carrier[\zeta] = \alpha$ and $\indexset[\zeta] = \naturals$ and $\index[\zeta] = \beta$.
+ %Take $\zeta$ such that $\carrier[\zeta] = \alpha$ and $\indexxset[\zeta] = \naturals$ and $\indexx[\zeta] = \beta$.
Omitted.
\end{subproof}
@@ -628,14 +629,14 @@ The first tept will be a formalisation of chain constructions.
%We show that there exist $k \in \funs{\carrier[X]}{\reals}$ such that
%$k(x)$
- %For all $n \in \naturals$ we have $\index[\zeta](n)$ is a urysohnchain in $X$.
+ %For all $n \in \naturals$ we have $\indexx[\zeta](n)$ is a urysohnchain in $X$.
- We show that for all $n \in \indexset[\zeta]$ we have $\index[\zeta](n)$ has cardinality $\pot(n)$.
+ We show that for all $n \in \indexxset[\zeta]$ we have $\indexx[\zeta](n)$ has cardinality $\pot(n)$.
\begin{subproof}
Omitted.
\end{subproof}
- We show that for all $m \in \indexset[\zeta]$ we have $\pot(m) \neq \zero$.
+ We show that for all $m \in \indexxset[\zeta]$ we have $\pot(m) \neq \zero$.
\begin{subproof}
Omitted.
\end{subproof}
@@ -646,212 +647,212 @@ The first tept will be a formalisation of chain constructions.
\end{subproof}
- We show that for all $m \in \indexset[\zeta]$ we have there exist $f$ such that $f \in \funs{\carrier[X]}{\intervalclosed{\zero}{1}}$
- and for all $n \in \indexset[\index[\zeta](m)]$ we have for all $x \in \index[\index[\zeta](m)](n)$ such that $x \notin \index[\index[\zeta](m)](n-1)$
- we have $f(x) = \rfrac{n}{\pot(m)}$.
- \begin{subproof}
- Fix $m \in \indexset[\zeta]$.
- %$\index[\zeta](m)$ is a urysohnchain in $X$.
-
- %Define $o : \alpha \to \intervalclosed{\zero}{1}$ such that $o(x) =$
- %\begin{cases}
- % & 0 & \text{if} x \in A
- % & 1 & \text{if} x \in B
- % & \rfrac{n}{m} & \text{if} \exists n \in \naturals. x \in \index[\index[\zeta](m)](n) \land x \notin \index[\index[\zeta](m)](n-1)
- %\end{cases}
+% We show that for all $m \in \indexxset[\zeta]$ we have there exist $f$ such that $f \in \funs{\carrier[X]}{\intervalclosed{\zero}{1}}$
+% and for all $n \in \indexxset[\indexx[\zeta](m)]$ we have for all $x \in \indexx[\indexx[\zeta](m)](n)$ such that $x \notin \indexx[\indexx[\zeta](m)](n-1)$
+% we have $f(x) = \rfrac{n}{\pot(m)}$.
+% \begin{subproof}
+% Fix $m \in \indexxset[\zeta]$.
+% %$\indexx[\zeta](m)$ is a urysohnchain in $X$.
%
- Omitted.
- \end{subproof}
-
-
-
- %The sequenc of the functions
- Let $\gamma = \{
- (n,f) \mid
- n \in \naturals \mid
-
- \forall n' \in \indexset[\index[\zeta](n)].
- \forall x \in \carrier[X].
-
-
- f \in \funs{\carrier[X]}{\intervalclosed{\zero}{1}} \land
-
-
- % (n,f) \in \gamma <=> \phi(n,f)
- % with \phi (n,f) :=
- % (x \in (A_k) \ (A_k-1)) ==> f(x) = ( k / 2^n )
- % \/ (x \notin A_k for all k \in {1,..,n} ==> f(x) = 1
-
- ( (n' = \zero)
- \land (x \in \index[\index[\zeta](n)](n'))
- \land (f(x)= \zero) )
-
- \lor
-
- ( (n' > \zero)
- \land (x \in \index[\index[\zeta](n)](n'))
- \land (x \notin \index[\index[\zeta](n)](n'-1))
- \land (f(x) = \rfrac{n'}{\pot(n)}) )
-
- \lor
-
- ( (x \notin \index[\index[\zeta](n)](n'))
- \land (f(x) = 1) )
-
- \}$.
-
- Let $\gamma(n) = \apply{\gamma}{n}$ for $n \in \naturals$.
-
- We show that for all $n \in \naturals$ we have $\gamma(n)$
- is a function from $\carrier[X]$ to $\reals$.
- \begin{subproof}
- Omitted.
- \end{subproof}
-
-
- We show that for all $n \in \naturals$ we have $\gamma(n)$
- is a function from $\carrier[X]$ to $\intervalclosed{\zero}{1}$.
- \begin{subproof}
- Omitted.
- \end{subproof}
-
- We show that $\gamma$ is a function from $\naturals$ to $\reals$.
- \begin{subproof}
- Omitted.
- \end{subproof}
-
- We show that for all $x,k,n$ such that $n\in \naturals$ and $k \in \naturals$ and $x \in \index[\index[\zeta](n)](k)$ we have $\apply{\gamma(n)}{x} = \rfrac{k}{\pot(n)}$.
- \begin{subproof}
- Omitted.
- \end{subproof}
-
- We show that for all $n \in \naturals$ for all $x \in \carrier[X]$ we have $\apply{\gamma(n)}{x} \in \intervalclosed{\zero}{1}$.
- \begin{subproof}
- Fix $n \in \naturals$.
- Fix $x \in \carrier[X]$.
- Omitted.
- \end{subproof}
-
-
-
- We show that
- if $h$ is a function from $\naturals$ to $\reals$ and for all $n \in \naturals$ we have $h(n) \leq h(n+1)$ and there exist $B \in \reals$ such that $h(n) < B$
- then there exist $k \in \reals$ such that for all $m \in \naturals$ we have $h(m) \leq k$ and for all $k' \in \reals$ such that $k' < k$ we have there exist $M \in \naturals$ such that $k' < h(M)$.
- \begin{subproof}
- Omitted.
- \end{subproof}
-
-
-
- We show that there exist $g$ such that for all $x \in \carrier[X]$ we have there exist $k \in \reals$ such that $g(x)= k$ and for all $\epsilon \in \reals$ such that $\epsilon > \zero$ we have there exist $N \in \naturals$ such that for all $N' \in \naturals$ such that $N' > N$ we have $\abs{\apply{\gamma(N')}{x} - k} < \epsilon$.
- \begin{subproof}
- We show that for all $x \in \carrier[X]$ we have there exist $k \in \reals$ such that for all $\epsilon \in \reals$ such that $\epsilon > \zero$ we have there exist $N \in \naturals$ such that for all $N' \in \naturals$ such that $N' > N$ we have $\abs{\apply{\gamma(N')}{x} - k} < \epsilon$.
- \begin{subproof}
- Fix $x \in \carrier[X]$.
-
- Omitted.
-
- % Contradiction by \cref{two_in_naturals,function_apply_default,reals_axiom_zero_in_reals,dom_emptyset,notin_emptyset,funs_type_apply,neg,minus,abs_behavior1}.
- %Follows by \cref{two_in_naturals,function_apply_default,reals_axiom_zero_in_reals,dom_emptyset,notin_emptyset,funs_type_apply,neg,minus,abs_behavior1}.
- \end{subproof}
- Omitted.
- \end{subproof}
-
-
- Let $G(x) = g(x)$ for $x \in \carrier[X]$.
- We have $\dom{G} = \carrier[X]$.
-
- We show that for all $x \in \dom{G}$ we have $G(x) \in \reals$.
- \begin{subproof}
- %Fix $x \in \dom{G}$.
- %It suffices to show that $g(x) \in \reals$.
+% %Define $o : \alpha \to \intervalclosed{\zero}{1}$ such that $o(x) =$
+% %\begin{cases}
+% % & 0 & \text{if} x \in A
+% % & 1 & \text{if} x \in B
+% % & \rfrac{n}{m} & \text{if} \exists n \in \naturals. x \in \indexx[\indexx[\zeta](m)](n) \land x \notin \indexx[\indexx[\zeta](m)](n-1)
+% %\end{cases}
+%%
+% Omitted.
+% \end{subproof}
%
- %There exist $k \in \reals$ such that for all $\epsilon \in \reals$ such that $\epsilon > \zero$ we have there exist $N \in \naturals$ such that for all $N' \in \naturals$ such that $N' > N$ we have $\abs{\apply{\gamma(N')}{x} - k} < \epsilon$.
+%
%
- %We show that for all $\epsilon \in \reals$ such that $\epsilon > \zero$ we have there exist $N \in \naturals$ such that for all $N' \in \naturals$ such that $N' > N$ we have $\abs{\apply{\gamma(N')}{x} - g(x)} < \epsilon$ and $g(x)= k$.
- %\begin{subproof}
- % Fix $\epsilon \in \reals$.
- %
+% %The sequenc of the functions
+% Let $\gamma = \{
+% (n,f) \mid
+% n \in \naturals \mid
+%
+% \forall n' \in \indexxset[\indexx[\zeta](n)].
+% \forall x \in \carrier[X].
+%
%
- %\end{subproof}
- %Follows by \cref{apply,plus_one_order,ordinal_iff_suc_ordinal,natural_number_is_ordinal,subseteq,naturals_subseteq_reals,naturals_is_equal_to_two_times_naturals,reals_one_bigger_zero,one_in_reals,ordinal_prec_trichotomy,omega_is_an_ordinal,suc_intro_self,two_in_naturals,in_asymmetric,suc}.
- Omitted.
- \end{subproof}
-
- We show that for all $x \in \dom{G}$ we have $\zero \leq G(x) \leq 1$.
- \begin{subproof}
- %Fix $x \in \dom{G}$.
- %Then $x \in \carrier[X]$.
- %\begin{byCase}
- % \caseOf{$x \in A$.}
- % For all $n \in \naturals$ we have $\apply{\gamma(n)}{x} = \zero$.
-%
-%
- % \caseOf{$x \notin A$.}
- % \begin{byCase}
- % \caseOf{$x \in B$.}
- % For all $n \in \naturals$ we have $\apply{\gamma(n)}{x} = 1$.
-%
- % \caseOf{$x \notin B$.}
- % Omitted.
- % \end{byCase}
- %\end{byCase}
- Omitted.
- \end{subproof}
-
-
- We show that $G \in \funs{\carrier[X]}{\intervalclosed{\zero}{1}}$.
- \begin{subproof}
- %It suffices to show that $\ran{G} \subseteq \intervalclosed{\zero}{1}$ by \cref{fun_ran_iff,funs_intro,funs_weaken_codom}.
- %It suffices to show that for all $x \in \dom{G}$ we have $G(x) \in \intervalclosed{\zero}{1}$.
- %Fix $x \in \dom{G}$.
- %Then $x \in \carrier[X]$.
- %$g(x) = G(x)$.
- %We have $G(x) \in \reals$.
- %$\zero \leq G(x) \leq 1$.
- %We have $G(x) \in \intervalclosed{\zero}{1}$ .
- Omitted.
- \end{subproof}
-
- We show that $G(A) = \zero$.
- \begin{subproof}
- Omitted.
- \end{subproof}
-
- We show that $G(B) = 1$.
- \begin{subproof}
- Omitted.
- \end{subproof}
-
- We show that $G$ is continuous.
- \begin{subproof}
- Omitted.
- \end{subproof}
-
- %Suppose $\eta$ is a urysohnchain in $X$.
- %Suppose $\carrier[\eta] =\{A, (X \setminus B)\}$
- %and $\indexset[\eta] = \{\zero, 1\}$
- %and $\index[\eta](\zero) = A$
- %and $\index[\eta](1) = (X \setminus B)$.
-
-
- %Then $\eta$ is a urysohnchain in $X$.
-
- % Take $P$ such that $P$ is a infinite sequence and $\indexset[P] = \naturals$ and for all $i \in \indexset[P]$ we have $\index[P](i) = \pow{X}$.
- %
- % We show that there exist $\zeta$ such that $\zeta$ is a infinite sequence
- % and for all $i \in \indexset[\zeta]$ we have
- % $\index[\zeta](i)$ is a urysohnchain in $X$ of cardinality $i$
- % and $A \subseteq \index[\zeta](i)$
- % and $\index[\zeta](i) \subseteq (X \setminus B)$
- % and for all $j \in \indexset[\zeta]$ such that
- % $j < i$ we have for all $x \in \index[\zeta](j)$ we have $x \in \index[\zeta](i)$.
- % \begin{subproof}
- % Omitted.
- % \end{subproof}
- %
- %
- %
+% f \in \funs{\carrier[X]}{\intervalclosed{\zero}{1}} \land
+%
+%
+% % (n,f) \in \gamma <=> \phi(n,f)
+% % with \phi (n,f) :=
+% % (x \in (A_k) \ (A_k-1)) ==> f(x) = ( k / 2^n )
+% % \/ (x \notin A_k for all k \in {1,..,n} ==> f(x) = 1
+%
+% ( (n' = \zero)
+% \land (x \in \indexx[\indexx[\zeta](n)](n'))
+% \land (f(x)= \zero) )
+%
+% \lor
+%
+% ( (n' > \zero)
+% \land (x \in \indexx[\indexx[\zeta](n)](n'))
+% \land (x \notin \indexx[\indexx[\zeta](n)](n'-1))
+% \land (f(x) = \rfrac{n'}{\pot(n)}) )
+%
+% \lor
+%
+% ( (x \notin \indexx[\indexx[\zeta](n)](n'))
+% \land (f(x) = 1) )
+%
+% \}$.
+%
+% Let $\gamma(n) = \apply{\gamma}{n}$ for $n \in \naturals$.
+%
+% We show that for all $n \in \naturals$ we have $\gamma(n)$
+% is a function from $\carrier[X]$ to $\reals$.
+% \begin{subproof}
+% Omitted.
+% \end{subproof}
+%
+%
+% We show that for all $n \in \naturals$ we have $\gamma(n)$
+% is a function from $\carrier[X]$ to $\intervalclosed{\zero}{1}$.
+% \begin{subproof}
+% Omitted.
+% \end{subproof}
+%
+% We show that $\gamma$ is a function from $\naturals$ to $\reals$.
+% \begin{subproof}
+% Omitted.
+% \end{subproof}
+%
+% We show that for all $x,k,n$ such that $n\in \naturals$ and $k \in \naturals$ and $x \in \indexx[\indexx[\zeta](n)](k)$ we have $\apply{\gamma(n)}{x} = \rfrac{k}{\pot(n)}$.
+% \begin{subproof}
+% Omitted.
+% \end{subproof}
+%
+% We show that for all $n \in \naturals$ for all $x \in \carrier[X]$ we have $\apply{\gamma(n)}{x} \in \intervalclosed{\zero}{1}$.
+% \begin{subproof}
+% Fix $n \in \naturals$.
+% Fix $x \in \carrier[X]$.
+% Omitted.
+% \end{subproof}
+%
+%
+%
+% We show that
+% if $h$ is a function from $\naturals$ to $\reals$ and for all $n \in \naturals$ we have $h(n) \leq h(n+1)$ and there exist $B \in \reals$ such that $h(n) < B$
+% then there exist $k \in \reals$ such that for all $m \in \naturals$ we have $h(m) \leq k$ and for all $k' \in \reals$ such that $k' < k$ we have there exist $M \in \naturals$ such that $k' < h(M)$.
+% \begin{subproof}
+% Omitted.
+% \end{subproof}
+%
+%
+%
+% We show that there exist $g$ such that for all $x \in \carrier[X]$ we have there exist $k \in \reals$ such that $g(x)= k$ and for all $\epsilon \in \reals$ such that $\epsilon > \zero$ we have there exist $N \in \naturals$ such that for all $N' \in \naturals$ such that $N' > N$ we have $\abs{\apply{\gamma(N')}{x} - k} < \epsilon$.
+% \begin{subproof}
+% We show that for all $x \in \carrier[X]$ we have there exist $k \in \reals$ such that for all $\epsilon \in \reals$ such that $\epsilon > \zero$ we have there exist $N \in \naturals$ such that for all $N' \in \naturals$ such that $N' > N$ we have $\abs{\apply{\gamma(N')}{x} - k} < \epsilon$.
+% \begin{subproof}
+% Fix $x \in \carrier[X]$.
+%
+% Omitted.
+%
+% % Contradiction by \cref{two_in_naturals,function_apply_default,reals_axiom_zero_in_reals,dom_emptyset,notin_emptyset,funs_type_apply,neg,minus,abs_behavior1}.
+% %Follows by \cref{two_in_naturals,function_apply_default,reals_axiom_zero_in_reals,dom_emptyset,notin_emptyset,funs_type_apply,neg,minus,abs_behavior1}.
+% \end{subproof}
+% Omitted.
+% \end{subproof}
+%
+%
+% Let $G(x) = g(x)$ for $x \in \carrier[X]$.
+% We have $\dom{G} = \carrier[X]$.
+%
+% We show that for all $x \in \dom{G}$ we have $G(x) \in \reals$.
+% \begin{subproof}
+% %Fix $x \in \dom{G}$.
+% %It suffices to show that $g(x) \in \reals$.
+%%
+% %There exist $k \in \reals$ such that for all $\epsilon \in \reals$ such that $\epsilon > \zero$ we have there exist $N \in \naturals$ such that for all $N' \in \naturals$ such that $N' > N$ we have $\abs{\apply{\gamma(N')}{x} - k} < \epsilon$.
+%%
+% %We show that for all $\epsilon \in \reals$ such that $\epsilon > \zero$ we have there exist $N \in \naturals$ such that for all $N' \in \naturals$ such that $N' > N$ we have $\abs{\apply{\gamma(N')}{x} - g(x)} < \epsilon$ and $g(x)= k$.
+% %\begin{subproof}
+% % Fix $\epsilon \in \reals$.
+% %
+%%
+% %\end{subproof}
+% %Follows by \cref{apply,plus_one_order,ordinal_iff_suc_ordinal,natural_number_is_ordinal,subseteq,naturals_subseteq_reals,naturals_is_equal_to_two_times_naturals,reals_one_bigger_zero,one_in_reals,ordinal_prec_trichotomy,omega_is_an_ordinal,suc_intro_self,two_in_naturals,in_asymmetric,suc}.
+% Omitted.
+% \end{subproof}
+%
+% We show that for all $x \in \dom{G}$ we have $\zero \leq G(x) \leq 1$.
+% \begin{subproof}
+% %Fix $x \in \dom{G}$.
+% %Then $x \in \carrier[X]$.
+% %\begin{byCase}
+% % \caseOf{$x \in A$.}
+% % For all $n \in \naturals$ we have $\apply{\gamma(n)}{x} = \zero$.
+%%
+%%
+% % \caseOf{$x \notin A$.}
+% % \begin{byCase}
+% % \caseOf{$x \in B$.}
+% % For all $n \in \naturals$ we have $\apply{\gamma(n)}{x} = 1$.
+%%
+% % \caseOf{$x \notin B$.}
+% % Omitted.
+% % \end{byCase}
+% %\end{byCase}
+% Omitted.
+% \end{subproof}
+%
+%
+% We show that $G \in \funs{\carrier[X]}{\intervalclosed{\zero}{1}}$.
+% \begin{subproof}
+% %It suffices to show that $\ran{G} \subseteq \intervalclosed{\zero}{1}$ by \cref{fun_ran_iff,funs_intro,funs_weaken_codom}.
+% %It suffices to show that for all $x \in \dom{G}$ we have $G(x) \in \intervalclosed{\zero}{1}$.
+% %Fix $x \in \dom{G}$.
+% %Then $x \in \carrier[X]$.
+% %$g(x) = G(x)$.
+% %We have $G(x) \in \reals$.
+% %$\zero \leq G(x) \leq 1$.
+% %We have $G(x) \in \intervalclosed{\zero}{1}$ .
+% Omitted.
+% \end{subproof}
+%
+% We show that $G(A) = \zero$.
+% \begin{subproof}
+% Omitted.
+% \end{subproof}
+%
+% We show that $G(B) = 1$.
+% \begin{subproof}
+% Omitted.
+% \end{subproof}
+%
+% We show that $G$ is continuous.
+% \begin{subproof}
+% Omitted.
+% \end{subproof}
+%
+% %Suppose $\eta$ is a urysohnchain in $X$.
+% %Suppose $\carrier[\eta] =\{A, (X \setminus B)\}$
+% %and $\indexxset[\eta] = \{\zero, 1\}$
+% %and $\indexx[\eta](\zero) = A$
+% %and $\indexx[\eta](1) = (X \setminus B)$.
+%
+%
+% %Then $\eta$ is a urysohnchain in $X$.
+%
+% % Take $P$ such that $P$ is a infinite sequence and $\indexxset[P] = \naturals$ and for all $i \in \indexxset[P]$ we have $\indexx[P](i) = \pow{X}$.
+% %
+% % We show that there exist $\zeta$ such that $\zeta$ is a infinite sequence
+% % and for all $i \in \indexxset[\zeta]$ we have
+% % $\indexx[\zeta](i)$ is a urysohnchain in $X$ of cardinality $i$
+% % and $A \subseteq \indexx[\zeta](i)$
+% % and $\indexx[\zeta](i) \subseteq (X \setminus B)$
+% % and for all $j \in \indexxset[\zeta]$ such that
+% % $j < i$ we have for all $x \in \indexx[\zeta](j)$ we have $x \in \indexx[\zeta](i)$.
+% % \begin{subproof}
+% % Omitted.
+% % \end{subproof}
+% %
+% %
+% %
%
%
%