summaryrefslogtreecommitdiff
path: root/library/topology/urysohn.tex
diff options
context:
space:
mode:
Diffstat (limited to 'library/topology/urysohn.tex')
-rw-r--r--library/topology/urysohn.tex39
1 files changed, 32 insertions, 7 deletions
diff --git a/library/topology/urysohn.tex b/library/topology/urysohn.tex
index 65457ea..c795db8 100644
--- a/library/topology/urysohn.tex
+++ b/library/topology/urysohn.tex
@@ -33,10 +33,6 @@ The first tept will be a formalisation of chain constructions.
$\seq{m}{n} = \{x \in \naturals \mid m \leq x \leq n\}$.
\end{definition}
-\begin{definition}\label{cardinality}
- $X$ has cardinality of $n$ iff
- $n \in \naturals$ and there exists $b$ such that $b$ is a bijection from $\seq{1}{n}$ to $X$.
-\end{definition}
@@ -134,6 +130,13 @@ The first tept will be a formalisation of chain constructions.
for all $n,m \in \indexset[C]$ such that $n < m$ we have $\closure{\index[C](n)}{X} \subseteq \interior{\index[C](m)}{X}$.
\end{definition}
+\begin{definition}\label{urysohnchain_without_cardinality}
+ $C$ is a urysohnchain in $X$ iff
+ $C$ is a chain of subsets and
+ for all $A \in C$ we have $A \subseteq X$ and
+ for all $n,m \in \indexset[C]$ such that $n < m$ we have $\closure{\index[C](n)}{X} \subseteq \interior{\index[C](m)}{X}$.
+\end{definition}
+
\begin{abbreviation}\label{infinte_sequence}
$S$ is a infinite sequence iff $S$ is a sequence and $\indexset[S]$ is infinite.
\end{abbreviation}
@@ -149,6 +152,26 @@ The first tept will be a formalisation of chain constructions.
and for all $g \in C$ such that $g \neq c$ we have not $y \subset g \subset x$.
\end{definition}
+\begin{abbreviation}\label{two}
+ $\two = \suc{1}$.
+\end{abbreviation}
+
+\begin{lemma}\label{two_in_reals}
+ $\two \in \reals$.
+\end{lemma}
+
+\begin{lemma}\label{two_in_naturals}
+ $\two \in \naturals$.
+\end{lemma}
+
+\begin{inductive}\label{power_of_two}
+ Define $\powerOfTwoSet \subseteq \naturals$.
+ \begin{enumerate}
+ \item $\two \in \powerOfTwoSet$.
+ \item If $n \in \powerOfTwoSet$, then $n \rmul \two \in \powerOfTwoSet$.
+ \end{enumerate}
+
+\end{inductive}
% The next thing we need to define is the uniform staircase function.
% This function has it's domain in $X$ and maps to the closed interval $[0,1]$.
@@ -186,6 +209,8 @@ The first tept will be a formalisation of chain constructions.
Omitted.
\end{subproof}
+ There exist $\eta$ such that $\eta$ is a urysohnchain in $X$ and $\eta =\{A, (x \setminus B)\}$.
+
Take $P$ such that $P$ is a infinite sequence and $\indexset[P] = \naturals$ and for all $i \in \indexset[P]$ we have $\index[P](i) = \pow{X}$.
@@ -269,6 +294,6 @@ The first tept will be a formalisation of chain constructions.
%\end{subproof}
\end{proof}
-%\begin{theorem}\label{safe}
-% Contradiction.
-%\end{theorem}
+\begin{theorem}\label{safe}
+ Contradiction.
+\end{theorem}