diff options
Diffstat (limited to 'library/topology/urysohn.tex')
| -rw-r--r-- | library/topology/urysohn.tex | 924 |
1 files changed, 924 insertions, 0 deletions
diff --git a/library/topology/urysohn.tex b/library/topology/urysohn.tex new file mode 100644 index 0000000..cd85fbc --- /dev/null +++ b/library/topology/urysohn.tex @@ -0,0 +1,924 @@ +\import{topology/topological-space.tex} +\import{topology/separation.tex} +\import{topology/continuous.tex} +\import{topology/basis.tex} +\import{numbers.tex} +\import{function.tex} +\import{set.tex} +\import{cardinal.tex} +\import{relation.tex} +\import{relation/uniqueness.tex} +\import{set/cons.tex} +\import{set/powerset.tex} +\import{set/fixpoint.tex} +\import{set/product.tex} + +\section{Urysohns Lemma Part 1 with struct}\label{form_sec_urysohn1} +% In this section we want to proof Urysohns lemma. +% We try to follow the proof of Klaus Jänich in his book. TODO: Book reference +% The Idea is to construct staircase functions as a chain. +% The limit of our chain turns out to be our desired continuous function from a topological space $X$ to $[0,1]$. +% With the property that \[f\mid_{A}=1 \land f\mid_{B}=0\] for \[A,B\] closed sets. + +%Chains of sets. + +This is the first attempt to prove Urysohns Lemma with the usage of struct. + +\subsection{Chains of sets} +% Assume $A,B$ are subsets of a topological space $X$. + +% As Jänich propose we want a special property on chains of subsets. +% We need a rising chain of subsets $\mathfrak{A} = (A_{0}, ... ,A_{r})$ of $A$, i.e. +% \begin{align} +% A = A_{0} \subset A_{1} \subset ... \subset A_{r} \subset X\setminus B +% \end{align} +% such that for all elements in this chain following holds, +% $\overline{A_{i-1}} \subset \interior{A_{i}}$. +% In this case we call the chain legal. + +\begin{definition}\label{urysohnone_one_to_n_set} + $\seq{m}{n} = \{x \in \naturals \mid m \leq x \leq n\}$. +\end{definition} + + + +%%----------------------- +% Idea: +% A sequence could be define as a family of sets, +% together with the existence of an indexing function. +% +%%----------------------- +\begin{struct}\label{urysohnone_sequence} + A sequence $X$ is a onesorted structure equipped with + \begin{enumerate} + \item $\indexx$ + \item $\indexxset$ + + \end{enumerate} + such that + \begin{enumerate} + \item\label{urysohnone_indexset_is_subset_naturals} $\indexxset[X] \subseteq \naturals$. + \item\label{urysohnone_index_is_bijection} $\indexx[X]$ is a bijection from $\indexxset[X]$ to $\carrier[X]$. + \end{enumerate} +\end{struct} + +% Eine folge ist ein Funktion mit domain \subseteq Ordinal zahlen + + + + +\begin{definition}\label{urysohnone_cahin_of_subsets} + $C$ is a chain of subsets iff + $C$ is a sequence and for all $n,m \in \indexxset[C]$ such that $n < m$ we have $\indexx[C](n) \subseteq \indexx[C](m)$. +\end{definition} + +\begin{definition}\label{urysohnone_chain_of_n_subsets} + $C$ is a chain of $n$ subsets iff + $C$ is a chain of subsets and $n \in \indexxset[C]$ + and for all $m \in \naturals$ such that $m \leq n$ we have $m \in \indexxset[C]$. +\end{definition} + + + +% TODO: The Notion above should be generalised to sequences since we need them as well for our limit +% and also for the subproof of continuity of the limit. + + +% \begin{definition}\label{urysohnone_legal_chain} +% $C$ is a legal chain of subsets of $X$ iff +% $C \subseteq \pow{X}$. %and +% %there exist $f \in \funs{C}{\naturals}$ such that +% %for all $x,y \in C$ we have if $f(x) < f(y)$ then $x \subset y \land \closure{x} \subset \interior{y}$. +% \end{definition} + +% TODO: We need a notion for declarinf new properties to existing thing. +% +% The following gives a example and a wish want would be nice to have: +% "A (structure) is called (adjectiv of property), if" +% +% This should then be use als follows: +% Let $X$ be a (adjectiv_1) ... (adjectiv_n) (structure_word). +% Which should be translated to fol like this: +% ?[X]: is_structure(X) & is_adjectiv_1(X) & ... & is_adjectiv_n(X) +% --------------------------------------------------------------- + + + +\subsection{staircase function} + +\begin{definition}\label{urysohnone_minimum} + $\min{X} = \{x \in X \mid \forall y \in X. x \leq y \}$. +\end{definition} + +\begin{definition}\label{urysohnone_maximum} + $\max{X} = \{x \in X \mid \forall y \in X. x \geq y \}$. +\end{definition} + +\begin{definition}\label{urysohnone_intervalclosed} + $\intervalclosed{a}{b} = \{x \in \reals \mid a \leq x \leq b\}$. +\end{definition} + +\begin{definition}\label{urysohnone_intervalopen} + $\intervalopen{a}{b} = \{ x \in \reals \mid a < x < b\}$. +\end{definition} + + +\begin{struct}\label{urysohnone_staircase_function} + A staircase function $f$ is a onesorted structure equipped with + \begin{enumerate} + \item $\chain$ + \end{enumerate} + such that + \begin{enumerate} + \item \label{urysohnone_staircase_is_function} $f$ is a function to $\intervalclosed{\zero}{1}$. + \item \label{urysohnone_staircase_domain} $\dom{f}$ is a topological space. + \item \label{urysohnone_staricase_def_chain} $C$ is a chain of subsets. + \item \label{urysohnone_staircase_chain_is_in_domain} for all $x \in C$ we have $x \subseteq \dom{f}$. + \item \label{urysohnone_staircase_behavoir_index_zero} $f(\indexx[C](1))= 1$. + \item \label{urysohnone_staircase_behavoir_index_n} $f(\dom{f}\setminus \unions{C}) = \zero$. + \item \label{urysohnone_staircase_chain_indeset} There exist $n$ such that $\indexxset[C] = \seq{\zero}{n}$. + \item \label{urysohnone_staircase_behavoir_index_arbetrray} for all $n \in \indexxset[C]$ + such that $n \neq \zero$ we have $f(\indexx[C](n) \setminus \indexx[C](n-1)) = \rfrac{n}{ \max{\indexxset[C]} }$. + \end{enumerate} +\end{struct} + +\begin{definition}\label{urysohnone_legal_staircase} + $f$ is a legal staircase function iff + $f$ is a staircase function and + for all $n,m \in \indexxset[\chain[f]]$ such that $n \leq m$ we have $f(\indexx[\chain[f]](n)) \leq f(\indexx[\chain[f]](m))$. +\end{definition} + +\begin{abbreviation}\label{urysohnone_urysohnspace} + $X$ is a urysohn space iff + $X$ is a topological space and + for all $A,B \in \closeds{X}$ such that $A \inter B = \emptyset$ + we have there exist $A',B' \in \opens[X]$ + such that $A \subseteq A'$ and $B \subseteq B'$ and $A' \inter B' = \emptyset$. +\end{abbreviation} + +\begin{definition}\label{urysohnone_urysohnchain} + $C$ is a urysohnchain in $X$ of cardinality $k$ iff %<---- TODO: cardinality unused! + $C$ is a chain of subsets and + for all $A \in C$ we have $A \subseteq X$ and + for all $n,m \in \indexxset[C]$ such that $n < m$ we have $\closure{\indexx[C](n)}{X} \subseteq \interior{\indexx[C](m)}{X}$. +\end{definition} + +\begin{definition}\label{urysohnone_urysohnchain_without_cardinality} + $C$ is a urysohnchain in $X$ iff + $C$ is a chain of subsets and + for all $A \in C$ we have $A \subseteq X$ and + for all $n,m \in \indexxset[C]$ such that $n < m$ we have $\closure{\indexx[C](n)}{X} \subseteq \interior{\indexx[C](m)}{X}$. +\end{definition} + +\begin{abbreviation}\label{urysohnone_infinte_sequence} + $S$ is a infinite sequence iff $S$ is a sequence and $\indexxset[S]$ is infinite. +\end{abbreviation} + +\begin{definition}\label{urysohnone_infinite_product} + $X$ is the infinite product of $Y$ iff + $X$ is a infinite sequence and for all $i \in \indexxset[X]$ we have $\indexx[X](i) = Y$. +\end{definition} + +\begin{definition}\label{urysohnone_refinmant} + $C'$ is a refinmant of $C$ iff $C'$ is a urysohnchain in $X$ + and for all $x \in C$ we have $x \in C'$ + and for all $y \in C$ such that $y \subset x$ we have there exist $c \in C'$ such that $y \subset c \subset x$ + and for all $g \in C'$ such that $g \neq c$ we have not $y \subset g \subset x$. +\end{definition} + +\begin{abbreviation}\label{urysohnone_two} + $\two = \suc{1}$. +\end{abbreviation} + +\begin{lemma}\label{urysohnone_two_in_reals} + $\two \in \reals$. +\end{lemma} + +\begin{lemma}\label{urysohnone_two_in_naturals} + $\two \in \naturals$. +\end{lemma} + +\begin{inductive}\label{urysohnone_power_of_two} + Define $\powerOfTwoSet \subseteq (\naturals \times \naturals)$. + \begin{enumerate} + \item $(\zero, 1) \in \powerOfTwoSet$. + \item If $(m,k) \in \powerOfTwoSet$, then $(m+1, k \rmul \two) \in \powerOfTwoSet$. + \end{enumerate} +\end{inductive} + +\begin{abbreviation}\label{urysohnone_pot} + $\pot = \powerOfTwoSet$. +\end{abbreviation} + +\begin{lemma}\label{urysohnone_dom_pot} + $\dom{\pot} = \naturals$. +\end{lemma} +\begin{proof} + Omitted. +\end{proof} + +\begin{lemma}\label{urysohnone_ran_pot} + $\ran{\pot} \subseteq \naturals$. +\end{lemma} + + +\begin{axiom}\label{urysohnone_pot1} + $\pot \in \funs{\naturals}{\naturals}$. +\end{axiom} + +\begin{axiom}\label{urysohnone_pot2} + For all $n \in \naturals$ we have there exist $k\in \naturals$ such that $(n, k) \in \powerOfTwoSet$ and $\apply{\pot}{n}=k$. + %$\pot(n) = k$ iff there exist $x \in \powerOfTwoSet$ such that $x = (n,k)$. +\end{axiom} + + +%Without this abbreviation \pot cant be sed as a function in the standard sense +\begin{abbreviation}\label{urysohnone_pot_as_function} + $\pot(n) = \apply{\pot}{n}$. +\end{abbreviation} + +%Take all points, besids one but then take all open sets not containing x but all other, so \{x\} has to be closed +\begin{axiom}\label{urysohnone_hausdorff_implies_singltons_closed} + For all $X$ such that $X$ is Hausdorff we have + for all $x \in \carrier[X]$ we have $\{x\}$ is closed in $X$. +\end{axiom} + + +\begin{lemma}\label{urysohnone_urysohn_set_in_between} + Let $X$ be a urysohn space. + Suppose $A,B \in \closeds{X}$. + Suppose $A \subset B$. + %Suppose $B \union A \neq \carrier[X]$. + There exist $C \in \closeds{X}$ + such that $A \subset C \subset B$ or $A, B \in \opens[X]$. +\end{lemma} +\begin{proof} + We have $B \setminus A$ is inhabited. + Take $x$ such that $x \in (B \setminus A)$. + Then $A \subset (A \union \{x\})$. + Let $C = \closure{A \union \{x\}}{X}$. + We have $(A \union \{x\}) \subseteq \closure{A \union \{x\}}{X}$. + Therefore $A \subset C$. + $A \subseteq B \subseteq \carrier[X]$. + $x \in B$. + Therefore $x \in \carrier[X]$. + $(A \union \{x\}) \subseteq \carrier[X]$. + We have $\closure{A \union \{x\}}{X}$ is closed in $X$ by \cref{closure_is_closed}. + Therefore $C$ is closed in $X$ by \cref{closure_is_closed}. + \begin{byCase} + \caseOf{$C = B$.} + %We have $\carrier[X] \setminus A$ is open in $X$. + %We have $\carrier[X] \setminus B$ is open in $X$. + %$\{x\}$ is closed in $X$.% by \cref{hausdorff_implies_singltons_closed}. + %$A \union \{x\} = C$. + %$\carrier[X] \setminus (A \union \{x\}) = (\carrier[X] \setminus C)$. + %$\carrier[X] \setminus (A) = \{x\} \union (\carrier[X] \setminus C)$. + + + %Therefore $\{x\}$ is open in $X$. + Omitted. + \caseOf{$C \neq B$.} + Omitted. + \end{byCase} + +\end{proof} + + +\begin{proposition}\label{urysohnone_urysohnchain_induction_begin} + Let $X$ be a urysohn space. + Suppose $A,B \in \closeds{X}$. + Suppose $A \inter B$ is empty. + Then there exist $U$ + such that $\carrier[U] = \{A,(\carrier[X] \setminus B)\}$ + and $\indexxset[U]= \{\zero, 1\}$ + and $\indexx[U](\zero) = A$ + and $\indexx[U](1) = (\carrier[X] \setminus B)$. + %$U$ is a urysohnchain in $X$. +\end{proposition} +\begin{proof} + + Omitted. + + % We show that $U$ is a sequence. + % \begin{subproof} + % Omitted. + % \end{subproof} +% + % We show that $A \subseteq (\carrier[X] \setminus B)$. + % \begin{subproof} + % Omitted. + % \end{subproof} +% + % We show that $U$ is a chain of subsets. + % \begin{subproof} + % For all $n \in \indexxset[U]$ we have $n = \zero \lor n = 1$. + % It suffices to show that for all $n \in \indexxset[U]$ we have + % for all $m \in \indexxset[U]$ such that + % $n < m$ we have $\indexx[U](n) \subseteq \indexx[U](m)$. + % Fix $n \in \indexxset[U]$. + % Fix $m \in \indexxset[U]$. + % \begin{byCase} + % \caseOf{$n = 1$.} Trivial. + % \caseOf{$n = \zero$.} + % \begin{byCase} + % \caseOf{$m = \zero$.} Trivial. + % \caseOf{$m = 1$.} Omitted. + % \end{byCase} + % \end{byCase} + % \end{subproof} +% + % $A \subseteq X$. + % $(X \setminus B) \subseteq X$. + % We show that for all $x \in U$ we have $x \subseteq X$. + % \begin{subproof} + % Omitted. + % \end{subproof} +% + % We show that $\closure{A}{X} \subseteq \interior{(X \setminus B)}{X}$. + % \begin{subproof} + % Omitted. + % \end{subproof} + % We show that for all $n,m \in \indexxset[U]$ such that $n < m$ we have + % $\closure{\indexx[U](n)}{X} \subseteq \interior{\indexx[U](m)}{X}$. + % \begin{subproof} + % Omitted. + % \end{subproof} + + +\end{proof} + +\begin{proposition}\label{urysohnone_urysohnchain_induction_begin_step_two} + Let $X$ be a urysohn space. + Suppose $A,B \in \closeds{X}$. + Suppose $A \inter B$ is empty. + Suppose there exist $U$ + such that $\carrier[U] = \{A,(\carrier[X] \setminus B)\}$ + and $\indexxset[U]= \{\zero, 1\}$ + and $\indexx[U](\zero) = A$ + and $\indexx[U](1) = (\carrier[X] \setminus B)$. + Then $U$ is a urysohnchain in $X$. +\end{proposition} +\begin{proof} + Omitted. +\end{proof} + + + +\begin{proposition}\label{urysohnone_t_four_propositon} + Let $X$ be a urysohn space. + Then for all $A,B \subseteq X$ such that $\closure{A}{X} \subseteq \interior{B}{X}$ + we have there exists $C \subseteq X$ such that + $\closure{A}{X} \subseteq \interior{C}{X} \subseteq \closure{C}{X} \subseteq \interior{B}{X}$. +\end{proposition} +\begin{proof} + Omitted. +\end{proof} + + + +\begin{proposition}\label{urysohnone_urysohnchain_induction_step_existence} + Let $X$ be a urysohn space. + Suppose $U$ is a urysohnchain in $X$. + Then there exist $U'$ such that $U'$ is a refinmant of $U$ and $U'$ is a urysohnchain in $X$. +\end{proposition} +\begin{proof} + % U = ( A_{0}, A_{1}, A_{2}, ... , A_{n-1}, A_{n}) + % U' = ( A_{0}, A'_{1}, A_{1}, A'_{2}, A_{2}, ... A_{n-1}, A'_{n}, A_{n}) + + % Let $m = \max{\indexxset[U]}$. + % For all $n \in (\indexxset[U] \setminus \{m\})$ we have there exist $C \subseteq X$ + % such that $\closure{\indexx[U](n)}{X} \subseteq \interior{C}{X} \subseteq \closure{C}{X} \subseteq \interior{\indexx[U](n+1)}{X}$. + + + %\begin{definition}\label{urysohnone_refinmant} + % $C'$ is a refinmant of $C$ iff for all $x \in C$ we have $x \in C'$ and + % for all $y \in C$ such that $y \subset x$ + % we have there exist $c \in C'$ such that $y \subset c \subset x$ + % and for all $g \in C'$ such that $g \neq c$ we have not $y \subset g \subset x$. + %\end{definition} + Omitted. + +\end{proof} + + + + + +\begin{proposition}\label{urysohnone_existence_of_staircase_function} + Let $X$ be a urysohn space. + Suppose $U$ is a urysohnchain in $X$ and $U$ has cardinality $k$. + Suppose $k \neq \zero$. + Then there exist $f$ such that $f \in \funs{\carrier[X]}{\intervalclosed{\zero}{1}}$ + and for all $n \in \indexxset[U]$ we have for all $x \in \indexx[U](n)$ + we have $f(x) = \rfrac{n}{k}$. +\end{proposition} +\begin{proof} + Omitted. +\end{proof} + +\begin{abbreviation}\label{urysohnone_refinment_abbreviation} + $x \refine y$ iff $x$ is a refinmant of $y$. +\end{abbreviation} + + + + + +\begin{abbreviation}\label{urysohnone_sequence_of_functions} + $f$ is a sequence of functions iff $f$ is a sequence + and for all $g \in \carrier[f]$ we have $g$ is a function. +\end{abbreviation} + +\begin{abbreviation}\label{urysohnone_sequence_in_reals} + $s$ is a sequence of real numbers iff $s$ is a sequence + and for all $r \in \carrier[s]$ we have $r \in \reals$. +\end{abbreviation} + + + +\begin{axiom}\label{urysohnone_abs_behavior1} + If $x \geq \zero$ then $\abs{x} = x$. +\end{axiom} + +\begin{axiom}\label{urysohnone_abs_behavior2} + If $x < \zero$ then $\abs{x} = \neg{x}$. +\end{axiom} + +\begin{abbreviation}\label{urysohnone_converge} + $s$ converges iff $s$ is a sequence of real numbers + and $\indexxset[s]$ is infinite + and for all $\epsilon \in \reals$ such that $\epsilon > \zero$ we have + there exist $N \in \indexxset[s]$ such that + for all $m \in \indexxset[s]$ such that $m > N$ + we have $\abs{\indexx[s](N) - \indexx[s](m)} < \epsilon$. +\end{abbreviation} + + +\begin{definition}\label{urysohnone_limit_of_sequence} + $x$ is the limit of $s$ iff $s$ is a sequence of real numbers + and $x \in \reals$ and + for all $\epsilon \in \reals$ such that $\epsilon > \zero$ + we have there exist $n \in \indexxset[s]$ such that + for all $m \in \indexxset[s]$ such that $m > n$ + we have $\abs{x - \indexx[s](n)} < \epsilon$. +\end{definition} + +\begin{proposition}\label{urysohnone_existence_of_limit} + Let $s$ be a sequence of real numbers. + Then $s$ converges iff there exist $x \in \reals$ + such that $x$ is the limit of $s$. +\end{proposition} +\begin{proof} + Omitted. +\end{proof} + +\begin{definition}\label{urysohnone_limit_sequence} + $x$ is the limit sequence of $f$ iff + $x$ is a sequence and $\indexxset[x] = \dom{f}$ and + for all $n \in \indexxset[x]$ we have + $\indexx[x](n) = f(n)$. +\end{definition} + +\begin{definition}\label{urysohnone_realsminus} + $\realsminus = \{r \in \reals \mid r < \zero\}$. +\end{definition} + +\begin{abbreviation}\label{urysohnone_realsplus} + $\realsplus = \reals \setminus \realsminus$. +\end{abbreviation} + +\begin{proposition}\label{urysohnone_intervalclosed_subseteq_reals} + Suppose $a,b \in \reals$. + Suppose $a < b$. + Then $\intervalclosed{a}{b} \subseteq \reals$. +\end{proposition} + + + +\begin{lemma}\label{urysohnone_fraction1} + Let $x \in \reals$. + Then for all $y \in \reals$ such that $x \neq y$ we have there exists $r \in \rationals$ such that $y < r < x$ or $x < r < y$. +\end{lemma} +\begin{proof} + Omitted. +\end{proof} + +\begin{lemma}\label{urysohnone_frection2} + Suppose $a,b \in \reals$. + Suppose $a < b$. + Then $\intervalopen{a}{b}$ is infinite. +\end{lemma} +\begin{proof} + Omitted. +\end{proof} + +\begin{lemma}\label{urysohnone_frection3} + Suppose $a \in \reals$. + Suppose $a < \zero$. + Then there exist $N \in \naturals$ such that for all $N' \in \naturals$ such that $N' > N$ we have $\zero < \rfrac{1}{\pot(N')} < a$. +\end{lemma} +\begin{proof} + Omitted. +\end{proof} + +\begin{proposition}\label{urysohnone_fraction4} + Suppose $a,b,\epsilon \in \reals$. + Suppose $\epsilon > \zero$. + $\abs{a - b} < \epsilon$ iff $b \in \intervalopen{(a - \epsilon)}{(a + \epsilon)}$. +\end{proposition} +\begin{proof} + Omitted. +\end{proof} + +\begin{proposition}\label{urysohnone_fraction5} + Suppose $a,b,\epsilon \in \reals$. + Suppose $\epsilon > \zero$. + $b \in \intervalopen{(a - \epsilon)}{(a + \epsilon)}$ iff $a \in \intervalopen{(b - \epsilon)}{(b + \epsilon)}$. +\end{proposition} +\begin{proof} + Omitted. +\end{proof} + +\begin{proposition}\label{urysohnone_fraction6} + Suppose $a,\epsilon \in \reals$. + Suppose $\epsilon > \zero$. + $\intervalopen{(a - \epsilon)}{(a + \epsilon)} = \{r \in \reals \mid (a - \epsilon) < r < (a + \epsilon)\} $. +\end{proposition} + +\begin{abbreviation}\label{urysohnone_epsilonball} + $\epsBall{a}{\epsilon} = \intervalopen{(a - \epsilon)}{(a + \epsilon)}$. +\end{abbreviation} + +\begin{proposition}\label{urysohnone_fraction7} + Suppose $a,\epsilon \in \reals$. + Suppose $\epsilon > \zero$. + Then there exist $b \in \rationals$ such that $b \in \epsBall{a}{\epsilon}$. +\end{proposition} +\begin{proof} + Omitted. +\end{proof} + + + + +%\begin{definition}\label{urysohnone_sequencetwo} +% $Z$ is a sequencetwo iff $Z = (N,f,B)$ and $N \subseteq \naturals$ and $f$ is a bijection from $N$ to $B$. +%\end{definition} +% +%\begin{proposition}\label{urysohnone_sequence_existence} +% Suppose $N \subseteq \naturals$. +% Suppose $M \subseteq \naturals$. +% Suppose $N = M$. +% Then there exist $Z,f$ such that $f$ is a bijection from $N$ to $M$ and $Z=(N,f,M)$ and $Z$ is a sequencetwo. +%\end{proposition} +%\begin{proof} +% Let $f(x) = x$ for $x \in N$. +% Let $Z=(N,f,M)$. +%\end{proof} +%The proposition above and the definition prove false together with +% ordinal_subseteq_unions, omega_is_an_ordinal, powerset_intro, in_irrefl + + + + + + + + + +\begin{theorem}\label{urysohnone_urysohn1} + Let $X$ be a urysohn space. + Suppose $A,B \in \closeds{X}$. + Suppose $A \inter B$ is empty. + Suppose $\carrier[X]$ is inhabited. + There exist $f$ such that $f \in \funs{\carrier[X]}{\intervalclosed{\zero}{1}}$ + and $f(A) = \zero$ and $f(B)= 1$ and $f$ is continuous. +\end{theorem} +\begin{proof} + + There exist $\eta$ such that $\carrier[\eta] = \{A, (\carrier[X] \setminus B)\}$ + and $\indexxset[\eta] = \{\zero, 1\}$ + and $\indexx[\eta](\zero) = A$ + and $\indexx[\eta](1) = (\carrier[X] \setminus B)$ by \cref{urysohnone_urysohnchain_induction_begin}. + + We show that there exist $\zeta$ such that $\zeta$ is a sequence + and $\indexxset[\zeta] = \naturals$ + and $\eta \in \carrier[\zeta]$ and $\indexx[\zeta](\eta) = \zero$ + and for all $n \in \indexxset[\zeta]$ we have $n+1 \in \indexxset[\zeta]$ + and $\indexx[\zeta](n+1)$ is a refinmant of $\indexx[\zeta](n)$. + \begin{subproof} + %Let $\alpha = \{x \in C \mid \exists y \in \alpha. x \refine y \lor x = \eta\}$. + %Let $\beta = \{ (n,x) \mid n \in \naturals \mid \exists m \in \naturals. \exists y \in \alpha. (x \in \alpha) \land ((x \refine y \land m = n+1 )\lor ((n,x) = (\zero,\eta)))\}$. + % + % % TODO: Proof that \beta is a function which would be used for the indexing. + %For all $n \in \naturals$ we have there exist $x \in \alpha$ such that $(n,x) \in \beta$. + %$\dom{\beta} = \naturals$. + %$\ran{\beta} = \alpha$. + %$\beta \in \funs{\naturals}{\alpha}$. + %Take $\zeta$ such that $\carrier[\zeta] = \alpha$ and $\indexxset[\zeta] = \naturals$ and $\indexx[\zeta] = \beta$. + Omitted. + \end{subproof} + + Let $\alpha = \carrier[X]$. + %Define $f : \alpha \to \naturals$ such that $f(x) =$ + %\begin{cases} + % & 1 & \text{if} x \in A \lor x \in B + % & k & \text{if} \exists k \in \naturals + %\end{cases} +% + %We show that there exist $k \in \funs{\carrier[X]}{\reals}$ such that + %$k(x)$ + + %For all $n \in \naturals$ we have $\indexx[\zeta](n)$ is a urysohnchain in $X$. + + We show that for all $n \in \indexxset[\zeta]$ we have $\indexx[\zeta](n)$ has cardinality $\pot(n)$. + \begin{subproof} + Omitted. + \end{subproof} + + We show that for all $m \in \indexxset[\zeta]$ we have $\pot(m) \neq \zero$. + \begin{subproof} + Omitted. + \end{subproof} + + We show that for all $m \in \naturals$ we have $\pot(m) \in \naturals$. + \begin{subproof} + Omitted. + \end{subproof} + + +% We show that for all $m \in \indexxset[\zeta]$ we have there exist $f$ such that $f \in \funs{\carrier[X]}{\intervalclosed{\zero}{1}}$ +% and for all $n \in \indexxset[\indexx[\zeta](m)]$ we have for all $x \in \indexx[\indexx[\zeta](m)](n)$ such that $x \notin \indexx[\indexx[\zeta](m)](n-1)$ +% we have $f(x) = \rfrac{n}{\pot(m)}$. +% \begin{subproof} +% Fix $m \in \indexxset[\zeta]$. +% %$\indexx[\zeta](m)$ is a urysohnchain in $X$. +% +% %Define $o : \alpha \to \intervalclosed{\zero}{1}$ such that $o(x) =$ +% %\begin{cases} +% % & 0 & \text{if} x \in A +% % & 1 & \text{if} x \in B +% % & \rfrac{n}{m} & \text{if} \exists n \in \naturals. x \in \indexx[\indexx[\zeta](m)](n) \land x \notin \indexx[\indexx[\zeta](m)](n-1) +% %\end{cases} +%% +% Omitted. +% \end{subproof} +% +% +% +% %The sequenc of the functions +% Let $\gamma = \{ +% (n,f) \mid +% n \in \naturals \mid +% +% \forall n' \in \indexxset[\indexx[\zeta](n)]. +% \forall x \in \carrier[X]. +% +% +% f \in \funs{\carrier[X]}{\intervalclosed{\zero}{1}} \land +% +% +% % (n,f) \in \gamma <=> \phi(n,f) +% % with \phi (n,f) := +% % (x \in (A_k) \ (A_k-1)) ==> f(x) = ( k / 2^n ) +% % \/ (x \notin A_k for all k \in {1,..,n} ==> f(x) = 1 +% +% ( (n' = \zero) +% \land (x \in \indexx[\indexx[\zeta](n)](n')) +% \land (f(x)= \zero) ) +% +% \lor +% +% ( (n' > \zero) +% \land (x \in \indexx[\indexx[\zeta](n)](n')) +% \land (x \notin \indexx[\indexx[\zeta](n)](n'-1)) +% \land (f(x) = \rfrac{n'}{\pot(n)}) ) +% +% \lor +% +% ( (x \notin \indexx[\indexx[\zeta](n)](n')) +% \land (f(x) = 1) ) +% +% \}$. +% +% Let $\gamma(n) = \apply{\gamma}{n}$ for $n \in \naturals$. +% +% We show that for all $n \in \naturals$ we have $\gamma(n)$ +% is a function from $\carrier[X]$ to $\reals$. +% \begin{subproof} +% Omitted. +% \end{subproof} +% +% +% We show that for all $n \in \naturals$ we have $\gamma(n)$ +% is a function from $\carrier[X]$ to $\intervalclosed{\zero}{1}$. +% \begin{subproof} +% Omitted. +% \end{subproof} +% +% We show that $\gamma$ is a function from $\naturals$ to $\reals$. +% \begin{subproof} +% Omitted. +% \end{subproof} +% +% We show that for all $x,k,n$ such that $n\in \naturals$ and $k \in \naturals$ and $x \in \indexx[\indexx[\zeta](n)](k)$ we have $\apply{\gamma(n)}{x} = \rfrac{k}{\pot(n)}$. +% \begin{subproof} +% Omitted. +% \end{subproof} +% +% We show that for all $n \in \naturals$ for all $x \in \carrier[X]$ we have $\apply{\gamma(n)}{x} \in \intervalclosed{\zero}{1}$. +% \begin{subproof} +% Fix $n \in \naturals$. +% Fix $x \in \carrier[X]$. +% Omitted. +% \end{subproof} +% +% +% +% We show that +% if $h$ is a function from $\naturals$ to $\reals$ and for all $n \in \naturals$ we have $h(n) \leq h(n+1)$ and there exist $B \in \reals$ such that $h(n) < B$ +% then there exist $k \in \reals$ such that for all $m \in \naturals$ we have $h(m) \leq k$ and for all $k' \in \reals$ such that $k' < k$ we have there exist $M \in \naturals$ such that $k' < h(M)$. +% \begin{subproof} +% Omitted. +% \end{subproof} +% +% +% +% We show that there exist $g$ such that for all $x \in \carrier[X]$ we have there exist $k \in \reals$ such that $g(x)= k$ and for all $\epsilon \in \reals$ such that $\epsilon > \zero$ we have there exist $N \in \naturals$ such that for all $N' \in \naturals$ such that $N' > N$ we have $\abs{\apply{\gamma(N')}{x} - k} < \epsilon$. +% \begin{subproof} +% We show that for all $x \in \carrier[X]$ we have there exist $k \in \reals$ such that for all $\epsilon \in \reals$ such that $\epsilon > \zero$ we have there exist $N \in \naturals$ such that for all $N' \in \naturals$ such that $N' > N$ we have $\abs{\apply{\gamma(N')}{x} - k} < \epsilon$. +% \begin{subproof} +% Fix $x \in \carrier[X]$. +% +% Omitted. +% +% % Contradiction by \cref{two_in_naturals,function_apply_default,reals_axiom_zero_in_reals,dom_emptyset,notin_emptyset,funs_type_apply,neg,minus,abs_behavior1}. +% %Follows by \cref{two_in_naturals,function_apply_default,reals_axiom_zero_in_reals,dom_emptyset,notin_emptyset,funs_type_apply,neg,minus,abs_behavior1}. +% \end{subproof} +% Omitted. +% \end{subproof} +% +% +% Let $G(x) = g(x)$ for $x \in \carrier[X]$. +% We have $\dom{G} = \carrier[X]$. +% +% We show that for all $x \in \dom{G}$ we have $G(x) \in \reals$. +% \begin{subproof} +% %Fix $x \in \dom{G}$. +% %It suffices to show that $g(x) \in \reals$. +%% +% %There exist $k \in \reals$ such that for all $\epsilon \in \reals$ such that $\epsilon > \zero$ we have there exist $N \in \naturals$ such that for all $N' \in \naturals$ such that $N' > N$ we have $\abs{\apply{\gamma(N')}{x} - k} < \epsilon$. +%% +% %We show that for all $\epsilon \in \reals$ such that $\epsilon > \zero$ we have there exist $N \in \naturals$ such that for all $N' \in \naturals$ such that $N' > N$ we have $\abs{\apply{\gamma(N')}{x} - g(x)} < \epsilon$ and $g(x)= k$. +% %\begin{subproof} +% % Fix $\epsilon \in \reals$. +% % +%% +% %\end{subproof} +% %Follows by \cref{apply,plus_one_order,ordinal_iff_suc_ordinal,natural_number_is_ordinal,subseteq,naturals_subseteq_reals,naturals_is_equal_to_two_times_naturals,reals_one_bigger_zero,one_in_reals,ordinal_prec_trichotomy,omega_is_an_ordinal,suc_intro_self,two_in_naturals,in_asymmetric,suc}. +% Omitted. +% \end{subproof} +% +% We show that for all $x \in \dom{G}$ we have $\zero \leq G(x) \leq 1$. +% \begin{subproof} +% %Fix $x \in \dom{G}$. +% %Then $x \in \carrier[X]$. +% %\begin{byCase} +% % \caseOf{$x \in A$.} +% % For all $n \in \naturals$ we have $\apply{\gamma(n)}{x} = \zero$. +%% +%% +% % \caseOf{$x \notin A$.} +% % \begin{byCase} +% % \caseOf{$x \in B$.} +% % For all $n \in \naturals$ we have $\apply{\gamma(n)}{x} = 1$. +%% +% % \caseOf{$x \notin B$.} +% % Omitted. +% % \end{byCase} +% %\end{byCase} +% Omitted. +% \end{subproof} +% +% +% We show that $G \in \funs{\carrier[X]}{\intervalclosed{\zero}{1}}$. +% \begin{subproof} +% %It suffices to show that $\ran{G} \subseteq \intervalclosed{\zero}{1}$ by \cref{fun_ran_iff,funs_intro,funs_weaken_codom}. +% %It suffices to show that for all $x \in \dom{G}$ we have $G(x) \in \intervalclosed{\zero}{1}$. +% %Fix $x \in \dom{G}$. +% %Then $x \in \carrier[X]$. +% %$g(x) = G(x)$. +% %We have $G(x) \in \reals$. +% %$\zero \leq G(x) \leq 1$. +% %We have $G(x) \in \intervalclosed{\zero}{1}$ . +% Omitted. +% \end{subproof} +% +% We show that $G(A) = \zero$. +% \begin{subproof} +% Omitted. +% \end{subproof} +% +% We show that $G(B) = 1$. +% \begin{subproof} +% Omitted. +% \end{subproof} +% +% We show that $G$ is continuous. +% \begin{subproof} +% Omitted. +% \end{subproof} +% +% %Suppose $\eta$ is a urysohnchain in $X$. +% %Suppose $\carrier[\eta] =\{A, (X \setminus B)\}$ +% %and $\indexxset[\eta] = \{\zero, 1\}$ +% %and $\indexx[\eta](\zero) = A$ +% %and $\indexx[\eta](1) = (X \setminus B)$. +% +% +% %Then $\eta$ is a urysohnchain in $X$. +% +% % Take $P$ such that $P$ is a infinite sequence and $\indexxset[P] = \naturals$ and for all $i \in \indexxset[P]$ we have $\indexx[P](i) = \pow{X}$. +% % +% % We show that there exist $\zeta$ such that $\zeta$ is a infinite sequence +% % and for all $i \in \indexxset[\zeta]$ we have +% % $\indexx[\zeta](i)$ is a urysohnchain in $X$ of cardinality $i$ +% % and $A \subseteq \indexx[\zeta](i)$ +% % and $\indexx[\zeta](i) \subseteq (X \setminus B)$ +% % and for all $j \in \indexxset[\zeta]$ such that +% % $j < i$ we have for all $x \in \indexx[\zeta](j)$ we have $x \in \indexx[\zeta](i)$. +% % \begin{subproof} +% % Omitted. +% % \end{subproof} +% % +% % +% % + % + % + % + % + % + % We show that there exist $g \in \funs{X}{\intervalclosed{\zero}{1}}$ such that $g(A)=1$ and $g(X\setminus A) = \zero$. + % \begin{subproof} + % Omitted. + % \end{subproof} + % $g$ is a staircase function and $\chain[g] = C$. + % $g$ is a legal staircase function. + % + % + % We show that there exist $f$ such that $f \in \funs{X}{\intervalclosed{\zero}{1}}$ + % and $f(A) = 1$ and $f(B)= 0$ and $f$ is continuous. + % \begin{subproof} + % Omitted. + % \end{subproof} + + + % We show that for all $n \in \nautrals$ we have $C_{n}$ a legal chain of subsets of $X$. + % \begin{subproof} + % Omitted. + % \end{subproof} + + % Proof Sheme Idea: + % -We proof for n=1 that C_{n} is a chain and legal + % -Then by induction with P(n+1) is refinmant of P(n) + % -Therefore we have a increing refinmant of these Chains such that our limit could even apply + % --------------------------------------------------------- + + % We show that there exist $f \in \funs{\naturals}{\funs{X}{\intervalclosed{0}{1}}}$ such that $f(n)$ is a staircase function. %TODO: Define Staircase function + % \begin{subproof} + % Omitted. + % \end{subproof} + + + % Formalization idea of enumarted sequences: + % - Define a enumarted sequnecs as a set A with a bijection between A and E \in \pow{\naturals} + % - This should give all finite and infinte enumarable sequences + % - Introduce a notion for the indexing of these enumarable sequences. + % - Then we can define the limit of a enumarted sequence of functions. + % --------------------------------------------------------- + % + % Here we need a limit definition for sequences of functions + % We show that there exist $F \in \funs{X}{\intervalclosed{0}{1}}$ such that $F = \limit{set of the staircase functions}$ + % \begin{subproof} + % Omitted. + % \end{subproof} + % + % We show that $F(A) = 1$. + % \begin{subproof} + % Omitted. + % \end{subproof} + % + % We show that $F(B) = 0$. + % \begin{subproof} + % Omitted. + % \end{subproof} + % + % We show that $F$ is continuous. + % \begin{subproof} + % Omitted. + % \end{subproof} +\end{proof} +% +%\begin{theorem}\label{urysohnone_safe} +% Contradiction. +%\end{theorem} |
