summaryrefslogtreecommitdiff
path: root/library/topology/urysohn2.tex
diff options
context:
space:
mode:
Diffstat (limited to 'library/topology/urysohn2.tex')
-rw-r--r--library/topology/urysohn2.tex183
1 files changed, 172 insertions, 11 deletions
diff --git a/library/topology/urysohn2.tex b/library/topology/urysohn2.tex
index ea49a6c..c0b46c4 100644
--- a/library/topology/urysohn2.tex
+++ b/library/topology/urysohn2.tex
@@ -15,6 +15,34 @@
\section{Urysohns Lemma}
+\begin{definition}\label{minimum}
+ $\min{X} = \{x \in X \mid \forall y \in X. x \leq y \}$.
+\end{definition}
+
+
+\begin{definition}\label{maximum}
+ $\max{X} = \{x \in X \mid \forall y \in X. x \geq y \}$.
+\end{definition}
+
+
+\begin{definition}\label{intervalclosed}
+ $\intervalclosed{a}{b} = \{x \in \reals \mid a \leq x \leq b\}$.
+\end{definition}
+
+
+\begin{definition}\label{intervalopen}
+ $\intervalopen{a}{b} = \{ x \in \reals \mid a < x < b\}$.
+\end{definition}
+
+
+\begin{definition}\label{one_to_n_set}
+ $\seq{m}{n} = \{x \in \naturals \mid m \leq x \leq n\}$.
+\end{definition}
+
+
+\begin{definition}\label{sequence}
+ $X$ is a sequence iff $X$ is a function and $\dom{X} \subseteq \naturals$.
+\end{definition}
\begin{abbreviation}\label{urysohnspace}
@@ -26,13 +54,81 @@
\end{abbreviation}
-\begin{definition}\label{intervalclosed}
- $\intervalclosed{a}{b} = \{x \in \reals \mid a \leq x \leq b\}$.
+\begin{abbreviation}\label{at}
+ $\at{f}{n} = f(n)$.
+\end{abbreviation}
+
+
+\begin{definition}\label{chain_of_subsets}
+ $X$ is a chain of subsets in $Y$ iff $X$ is a sequence and for all $n \in \dom{X}$ we have $\at{X}{n} \subseteq \carrier[Y]$ and for all $m \in \dom{X}$ such that $m > n$ we have $\at{X}{n} \subseteq \at{X}{m}$.
+\end{definition}
+
+
+\begin{definition}\label{urysohnchain}%<-- zulässig
+ $X$ is a urysohnchain of $Y$ iff $X$ is a chain of subsets in $Y$ and for all $n,m \in \dom{X}$ such that $n < m$ we have $\closure{\at{X}{n}}{Y} \subseteq \interior{\at{X}{m}}{Y}$.
+\end{definition}
+
+
+\begin{definition}\label{finer} %<-- verfeinerung
+ $X$ is finer then $Y$ in $U$ iff for all $n \in \dom{X}$ we have $\at{X}{n} \in \ran{Y}$ and for all $m \in \dom{X}$ such that $n < m$ we have there exist $k \in \dom{Y}$ such that $ \closure{\at{X}{n}}{U} \subseteq \interior{\at{Y}{k}}{U} \subseteq \closure{\at{Y}{k}}{U} \subseteq \interior{\at{X}{m}}{U}$.
+\end{definition}
+
+
+\begin{definition}\label{sequence_of_reals}
+ $X$ is a sequence of reals iff $\ran{X} \subseteq \reals$.
+\end{definition}
+
+
+\begin{axiom}\label{abs_behavior1}
+ If $x \geq \zero$ then $\abs{x} = x$.
+\end{axiom}
+
+\begin{axiom}\label{abs_behavior2}
+ If $x < \zero$ then $\abs{x} = \neg{x}$.
+\end{axiom}
+
+\begin{definition}\label{realsminus}
+ $\realsminus = \{r \in \reals \mid r < \zero\}$.
+\end{definition}
+
+\begin{definition}\label{realsplus}
+ $\realsplus = \reals \setminus \realsminus$.
+\end{definition}
+
+\begin{definition}\label{epsilon_ball}
+ $\epsBall{x}{\epsilon} = \intervalopen{x-\epsilon}{x+\epsilon}$.
\end{definition}
+\begin{definition}\label{pointwise_convergence}
+ $X$ converge to $x$ iff for all $\epsilon \in \realsplus$ there exist $N \in \dom{X}$ such that for all $n \in \dom{X}$ such that $n > N$ we have $\at{X}{n} \in \epsBall{x}{\epsilon}$.
+\end{definition}
+
+
+\begin{proposition}\label{iff_sequence}
+ Suppose $X$ is a function.
+ Suppose $\dom{X} \subseteq \naturals$.
+ Then $X$ is a sequence.
+\end{proposition}
+
+
+
+
+
+\begin{theorem}\label{urysohnsetinbeetween}
+ Let $X$ be a urysohn space.
+ Suppose $A,B \in \closeds{X}$.
+ Suppose $\closure{A}{X} \subseteq \interior{B}{X}$.
+ Suppose $\carrier[X]$ is inhabited.
+ There exist $U \subseteq \carrier[X]$ such that $U$ is closed in $X$ and $\closure{A}{X} \subseteq \interior{U}{X} \subseteq \closure{U}{X} \subseteq \interior{B}{X}$.
+\end{theorem}
+\begin{proof}
+ Omitted.
+\end{proof}
+
+
\begin{theorem}\label{urysohn}
Let $X$ be a urysohn space.
Suppose $A,B \in \closeds{X}$.
@@ -42,21 +138,86 @@
and $f(A) = \zero$ and $f(B)= 1$ and $f$ is continuous.
\end{theorem}
\begin{proof}
-
-
- Define $f : X \to \reals$ such that $f(x) = $
+ Let $X' = \carrier[X]$.
+ Let $N = \{\zero, 1\}$.
+ $1 = \suc{\zero}$.
+ $1 \in \naturals$ and $\zero \in \naturals$.
+ $N \subseteq \naturals$.
+ Let $A' = (X' \setminus B)$.
+ $B \subseteq X'$ by \cref{powerset_elim,closeds}.
+ $A \subseteq X'$.
+ Therefore $A \subseteq A'$.
+ Define $U_0: N \to \{A, A'\}$ such that $U_0(n) =$
\begin{cases}
- &(x + k) &\text{if} x \in X \land k \in \naturals
- & x &\text{if} x \neq \zero
- & \zero & \text{if} x = \zero
- % & x ,x \in X <- will result in technicly ambigus parse
+ &A &\text{if} n = \zero \\
+ &A' &\text{if} n = 1
\end{cases}
+ $U_0$ is a function.
+ $\dom{U_0} = N$.
+ $\dom{U_0} \subseteq \naturals$ by \cref{ran_converse}.
+ $U_0$ is a sequence.
+ We have $1, \zero \in N$.
+ We show that $U_0$ is a chain of subsets in $X$.
+ \begin{subproof}
+ We have $\dom{U_0} \subseteq \naturals$.
+ We have for all $n \in \dom{U_0}$ we have $\at{U_0}{n} \subseteq \carrier[X]$ by \cref{topological_prebasis_iff_covering_family,union_as_unions,union_absorb_subseteq_left,subset_transitive,setminus_subseteq}.
+ We have $\dom{U_0} = \{\zero, 1\}$.
+
+ It suffices to show that for all $n \in \dom{U_0}$ we have for all $m \in \dom{U_0}$ such that $m > n$ we have $\at{U_0}{n} \subseteq \at{U_0}{m}$.
+
+ Fix $n \in \dom{U_0}$.
+ Fix $m \in \dom{U_0}$.
+
+ \begin{byCase}
+ \caseOf{$n \neq \zero$.}
+ Trivial.
+ \caseOf{$n = \zero$.}
+ \begin{byCase}
+ \caseOf{$m = \zero$.}
+ Trivial.
+ \caseOf{$m \neq \zero$.}
+ We have $A \subseteq A'$.
+ We have $\at{U_0}{\zero} = A$ by assumption.
+ We have $\at{U_0}{1}= A'$ by assumption.
+ \end{byCase}
+ \end{byCase}
+
+ \end{subproof}
+ $U_0$ is a urysohnchain of $X$.
+
+ %We are done with the first step, now we want to prove that we have U a sequence of these chain with U_0 the first chain.
+
+
- Trivial.
-
\end{proof}
\begin{theorem}\label{safe}
Contradiction.
\end{theorem}
+
+
+
+
+
+%
+%Ideen:
+%Eine folge ist ein Funktion mit domain \subseteq Natürlichenzahlen. als predicat
+%
+%zulässig und verfeinerung von ketten als predicat definieren.
+%
+%limits und punkt konvergenz als prädikat.
+%
+%
+%Vor dem Beweis vor dem eigentlichen Beweis.
+%die abgeleiteten Funktionen
+%
+%\derivedstiarcasefunction on A
+%
+%abbreviation: \at{f}{n} = f_{n}
+%
+%
+%TODO:
+%Reals ist ein topologischer Raum
+%
+