summaryrefslogtreecommitdiff
path: root/library/topology/urysohn2.tex
diff options
context:
space:
mode:
Diffstat (limited to 'library/topology/urysohn2.tex')
-rw-r--r--library/topology/urysohn2.tex14
1 files changed, 12 insertions, 2 deletions
diff --git a/library/topology/urysohn2.tex b/library/topology/urysohn2.tex
index a64fa7e..40a3615 100644
--- a/library/topology/urysohn2.tex
+++ b/library/topology/urysohn2.tex
@@ -46,7 +46,13 @@
$\intervalclosed{a}{b} = \{x \in \reals \mid a \leq x \leq b\}$.
\end{definition}
-
+\begin{theorem}\label{urysohnsetinbeetween}
+ Let $X$ be a urysohn space.
+ Suppose $A,B \in \closeds{X}$.
+ Suppose $\closure{A}{X} \subseteq \interior{B}{X}$.
+ Suppose $\carrier[X]$ is inhabited.
+ There exist $U \subseteq \carrier[X]$ such that $U$ is closed in $X$ and $\closure{A}{X} \subseteq \interior{U}{X} \subseteq \closure{U}{X} \subseteq \interior{B}{X}$.
+\end{theorem}
@@ -60,6 +66,10 @@
\end{theorem}
\begin{proof}
+ Let $H = \carrier[X] \setminus B$.
+ Let $P = \{x \in \pow{X} \mid x = A \lor x = H \lor (x \in \pow{X} \land (\closure{A}{X} \subseteq \interior{U}{X} \subseteq \closure{U}{X} \subseteq \interior{H}{X}))\}$.
+
+
Define $f : X \to \reals$ such that $f(x) = $
\begin{cases}
@@ -70,7 +80,7 @@
\end{cases}
- $U_1$
+
Trivial.