summaryrefslogtreecommitdiff
path: root/library/topology
diff options
context:
space:
mode:
Diffstat (limited to 'library/topology')
-rw-r--r--library/topology/continuous.tex14
-rw-r--r--library/topology/urysohn.tex274
2 files changed, 286 insertions, 2 deletions
diff --git a/library/topology/continuous.tex b/library/topology/continuous.tex
index 6a32353..a9bc58e 100644
--- a/library/topology/continuous.tex
+++ b/library/topology/continuous.tex
@@ -1,5 +1,7 @@
\import{topology/topological-space.tex}
\import{relation.tex}
+\import{function.tex}
+\import{set.tex}
\begin{definition}\label{continuous}
$f$ is continuous iff for all $U \in \opens[Y]$ we have $\preimg{f}{U} \in \opens[X]$.
@@ -8,18 +10,25 @@
\begin{proposition}\label{continuous_definition_by_closeds}
Let $X$ be a topological space.
Let $Y$ be a topological space.
+ Let $f \in \funs{X}{Y}$.
Then $f$ is continuous iff for all $U \in \closeds{Y}$ we have $\preimg{f}{U} \in \closeds{X}$.
\end{proposition}
\begin{proof}
Omitted.
- %We show that if $f$ is continuous then for all $U \in \closeds{Y}$ we have $\preimg{f}{U} \in \closeds{X}$.
+ %We show that if $f$ is continuous then for all $U \in \closeds{Y}$ such that $U \neq \emptyset$ we have $\preimg{f}{U} \in \closeds{X}$.
%\begin{subproof}
% Suppose $f$ is continuous.
% Fix $U \in \closeds{Y}$.
% $\carrier[Y] \setminus U$ is open in $Y$.
% Then $\preimg{f}{(\carrier[Y] \setminus U)}$ is open in $X$.
% Therefore $\carrier[X] \setminus \preimg{f}{(\carrier[Y] \setminus U)}$ is closed in $X$.
- % $\carrier[X] \setminus \preimg{f}{(\carrier[Y] \setminus U)} \subseteq \preimg{f}{U}$.
+ % We show that $\carrier[X] \setminus \preimg{f}{(\carrier[Y] \setminus U)} \subseteq \preimg{f}{U}$.
+ % \begin{subproof}
+ % It suffices to show that for all $x \in \carrier[X] \setminus \preimg{f}{(\carrier[Y] \setminus U)}$ we have $x \in \preimg{f}{U}$.
+ % Fix $x \in \carrier[X] \setminus \preimg{f}{(\carrier[Y] \setminus U)}$.
+ % Take $y \in \carrier[Y]$ such that $f(x)=y$.
+ % It suffices to show that $y \in U$.
+ % \end{subproof}
% $\preimg{f}{U} \subseteq \carrier[X] \setminus \preimg{f}{(\carrier[Y] \setminus U)}$.
%\end{subproof}
%We show that if for all $U \in \closeds{Y}$ we have $\preimg{f}{U} \in \closeds{X}$ then $f$ is continuous.
@@ -27,3 +36,4 @@
% Omitted.
%\end{subproof}
\end{proof}
+
diff --git a/library/topology/urysohn.tex b/library/topology/urysohn.tex
new file mode 100644
index 0000000..65457ea
--- /dev/null
+++ b/library/topology/urysohn.tex
@@ -0,0 +1,274 @@
+\import{topology/topological-space.tex}
+\import{topology/separation.tex}
+\import{topology/continuous.tex}
+\import{numbers.tex}
+\import{function.tex}
+\import{set.tex}
+\import{cardinal.tex}
+
+\section{Urysohns Lemma}
+% In this section we want to proof Urysohns lemma.
+% We try to follow the proof of Klaus Jänich in his book. TODO: Book reference
+% The Idea is to construct staircase functions as a chain.
+% The limit of our chain turns out to be our desired continuous function from a topological space $X$ to $[0,1]$.
+% With the property that \[f\mid_{A}=1 \land f\mid_{B}=0\] for \[A,B\] closed sets.
+
+%Chains of sets.
+
+The first tept will be a formalisation of chain constructions.
+
+\subsection{Chains of sets}
+% Assume $A,B$ are subsets of a topological space $X$.
+
+% As Jänich propose we want a special property on chains of subsets.
+% We need a rising chain of subsets $\mathfrak{A} = (A_{0}, ... ,A_{r})$ of $A$, i.e.
+% \begin{align}
+% A = A_{0} \subset A_{1} \subset ... \subset A_{r} \subset X\setminus B
+% \end{align}
+% such that for all elements in this chain following holds,
+% $\overline{A_{i-1}} \subset \interior{A_{i}}$.
+% In this case we call the chain legal.
+
+\begin{definition}\label{one_to_n_set}
+ $\seq{m}{n} = \{x \in \naturals \mid m \leq x \leq n\}$.
+\end{definition}
+
+\begin{definition}\label{cardinality}
+ $X$ has cardinality of $n$ iff
+ $n \in \naturals$ and there exists $b$ such that $b$ is a bijection from $\seq{1}{n}$ to $X$.
+\end{definition}
+
+
+
+\begin{struct}\label{sequence}
+ A sequence $X$ is a onesorted structure equipped with
+ \begin{enumerate}
+ \item $\index$
+ \item $\indexset$
+ \end{enumerate}
+ such that
+ \begin{enumerate}
+ \item\label{indexset_is_subset_naturals} $\indexset[X] \subseteq \naturals$.
+ \item\label{index_is_bijection} $\index[X]$ is a bijection from $\indexset[X]$ to $\carrier[X]$.
+ \end{enumerate}
+\end{struct}
+
+\begin{definition}\label{cahin_of_subsets}
+ $C$ is a chain of subsets iff
+ $C$ is a sequence and for all $n,m \in \indexset[C]$ such that $n < m$ we have $\index[C](n) \subseteq \index[C](m)$.
+\end{definition}
+
+\begin{definition}\label{chain_of_n_subsets}
+ $C$ is a chain of $n$ subsets iff
+ $C$ is a chain of subsets and $n \in \indexset[C]$
+ and for all $m \in \naturals$ such that $m \leq n$ we have $m \in \indexset[C]$.
+\end{definition}
+
+
+
+% TODO: The Notion above should be generalised to sequences since we need them as well for our limit
+% and also for the subproof of continuity of the limit.
+
+
+% \begin{definition}\label{legal_chain}
+% $C$ is a legal chain of subsets of $X$ iff
+% $C \subseteq \pow{X}$. %and
+% %there exist $f \in \funs{C}{\naturals}$ such that
+% %for all $x,y \in C$ we have if $f(x) < f(y)$ then $x \subset y \land \closure{x} \subset \interior{y}$.
+% \end{definition}
+
+% TODO: We need a notion for declarinf new properties to existing thing.
+%
+% The following gives a example and a wish want would be nice to have:
+% "A (structure) is called (adjectiv of property), if"
+%
+% This should then be use als follows:
+% Let $X$ be a (adjectiv_1) ... (adjectiv_n) (structure_word).
+% Which should be translated to fol like this:
+% ?[X]: is_structure(X) & is_adjectiv_1(X) & ... & is_adjectiv_n(X)
+% ---------------------------------------------------------------
+
+
+
+\subsection{staircase function}
+
+\begin{definition}\label{intervalclosed}
+ $\intervalclosed{a}{b} = \{x \in \reals \mid a \leq x \leq b\}$.
+\end{definition}
+
+
+\begin{struct}\label{staircase_function}
+ A staircase function $f$ is a onesorted structure equipped with
+ \begin{enumerate}
+ \item $\chain$
+ \end{enumerate}
+ such that
+ \begin{enumerate}
+ \item \label{staircase_is_function} $f$ is a function to $\intervalclosed{\zero}{1}$.
+ \item \label{staircase_domain} $\dom{f}$ is a topological space.
+ \item \label{staricase_def_chain} $C$ is a chain of subsets.
+ \item \label{staircase_chain_is_in_domain} for all $x \in C$ we have $x \subseteq \dom{f}$.
+ \item \label{staircase_behavoir_index_zero} $f(\index[C](1))= 1$.
+ \item \label{staircase_behavoir_index_n} $f(\dom{f}\setminus \unions{C}) = \zero$.
+ \end{enumerate}
+\end{struct}
+
+\begin{definition}\label{legal_staircase}
+ $f$ is a legal staircase function iff
+ $f$ is a staircase function and
+ for all $n,m \in \indexset[\chain[f]]$ such that $n \leq m$ we have $f(\index[\chain[f]](n)) \leq f(\index[\chain[f]](m))$.
+\end{definition}
+
+\begin{abbreviation}\label{urysohnspace}
+ $X$ is a urysohn space iff
+ $X$ is a topological space and
+ for all $A,B \in \closeds{X}$ such that $A \inter B = \emptyset$
+ we have there exist $A',B' \in \opens[X]$
+ such that $A \subseteq A'$ and $B \subseteq B'$ and $A' \inter B' = \emptyset$.
+\end{abbreviation}
+
+\begin{definition}\label{urysohnchain}
+ $C$ is a urysohnchain in $X$ of cardinality $k$ iff %<---- TODO: cardinality unused!
+ $C$ is a chain of subsets and
+ for all $A \in C$ we have $A \subseteq X$ and
+ for all $n,m \in \indexset[C]$ such that $n < m$ we have $\closure{\index[C](n)}{X} \subseteq \interior{\index[C](m)}{X}$.
+\end{definition}
+
+\begin{abbreviation}\label{infinte_sequence}
+ $S$ is a infinite sequence iff $S$ is a sequence and $\indexset[S]$ is infinite.
+\end{abbreviation}
+
+\begin{definition}\label{infinite_product}
+ $X$ is the infinite product of $Y$ iff
+ $X$ is a infinite sequence and for all $i \in \indexset[X]$ we have $\index[X](i) = Y$.
+\end{definition}
+
+\begin{definition}\label{refinmant}
+ $C$ is a refinmant of $C'$ iff for all $x \in C'$ we have $x \in C$ and
+ for all $y \in C'$ such that $y \subset x$ we have there exist $c \in C$ such that $y \subset c \subset x$
+ and for all $g \in C$ such that $g \neq c$ we have not $y \subset g \subset x$.
+\end{definition}
+
+
+% The next thing we need to define is the uniform staircase function.
+% This function has it's domain in $X$ and maps to the closed interval $[0,1]$.
+% These functions should behave als follows,
+% \begin{align}
+% &f(A_{0}) = 1 &\text{consant} \\
+% &f(A_{k} \setminus A_{k+1}) = 1-\frac{k}{r} &\text{constant.}
+% \end{align}
+
+% We then prove that for any given $r$ we find a repolished chain,
+% which contains the $A_{i}$ and this replished chain is also legal.
+%
+% The proof will be finished by taking the limit on $f_{n}$ with $f_{n}$
+% be a staircase function with $n$ many refinemants.
+% This limit will be continuous and we would be done.
+
+
+% TODO: Since we want to prove that $f$ is continus, we have to formalize that
+% \reals with the usual topology is a topological space.
+% -------------------------------------------------------------
+
+\begin{theorem}\label{urysohn}
+ Let $X$ be a urysohn space.
+ Suppose $A,B \subseteq \closeds{X}$.
+ Suppose $A \inter B$ is empty.
+ There exist $f$ such that $f \in \funs{X}{\intervalclosed{\zero}{1}}$
+ and $f(A) = 1$ and $f(B)= 0$ and $f$ is continuous.
+\end{theorem}
+\begin{proof}
+ We show that for all $n \in \naturals$ we have
+ if there exist $C$ such that $C$ is a urysohnchain in $X$ of cardinality $n$
+ then there exist $C'$ such that $C'$ is a urysohnchain in $X$ of cardinality $n+1$
+ and $C'$ is a refinmant of $C$.
+ \begin{subproof}
+ Omitted.
+ \end{subproof}
+
+
+
+ Take $P$ such that $P$ is a infinite sequence and $\indexset[P] = \naturals$ and for all $i \in \indexset[P]$ we have $\index[P](i) = \pow{X}$.
+
+ We show that there exist $\zeta$ such that $\zeta$ is a infinite sequence
+ and for all $i \in \indexset[\zeta]$ we have
+ $\index[\zeta](i)$ is a urysohnchain in $X$ of cardinality $i$
+ and $A \subseteq \index[\zeta](i)$
+ and $\index[\zeta](i) \subseteq (X \setminus B)$
+ and for all $j \in \indexset[\zeta]$ such that
+ $j < i$ we have for all $x \in \index[\zeta](j)$ we have $x \in \index[\zeta](i)$.
+ \begin{subproof}
+ Omitted.
+ \end{subproof}
+
+
+
+
+
+
+
+
+ We show that there exist $g \in \funs{X}{\intervalclosed{\zero}{1}}$ such that $g(A)=1$ and $g(X\setminus A) = \zero$.
+ \begin{subproof}
+ Omitted.
+ \end{subproof}
+ $g$ is a staircase function and $\chain[g] = C$.
+ $g$ is a legal staircase function.
+
+
+ We show that there exist $f$ such that $f \in \funs{X}{\intervalclosed{\zero}{1}}$
+ and $f(A) = 1$ and $f(B)= 0$ and $f$ is continuous.
+ \begin{subproof}
+ Omitted.
+ \end{subproof}
+
+
+ %We show that for all $n \in \nautrals$ we have $C_{n}$ a legal chain of subsets of $X$.
+ %\begin{subproof}
+ % Omitted.
+ %\end{subproof}
+
+ %Proof Sheme Idea:
+ % -We proof for n=1 that C_{n} is a chain and legal
+ % -Then by induction with P(n+1) is refinmant of P(n)
+ % -Therefore we have a increing refinmant of these Chains such that our limit could even apply
+ % ---------------------------------------------------------
+
+ %We show that there exist $f \in \funs{\naturals}{\funs{X}{\intervalclosed{0}{1}}}$ such that $f(n)$ is a staircase function. %TODO: Define Staircase function
+ %\begin{subproof}
+ % Omitted.
+ %\end{subproof}
+
+
+ % Formalization idea of enumarted sequences:
+ % - Define a enumarted sequnecs as a set A with a bijection between A and E \in \pow{\naturals}
+ % - This should give all finite and infinte enumarable sequences
+ % - Introduce a notion for the indexing of these enumarable sequences.
+ % - Then we can define the limit of a enumarted sequence of functions.
+ % ---------------------------------------------------------
+ %
+ % Here we need a limit definition for sequences of functions
+ %We show that there exist $F \in \funs{X}{\intervalclosed{0}{1}}$ such that $F = \limit{set of the staircase functions}$
+ %\begin{subproof}
+ % Omitted.
+ %\end{subproof}
+ %
+ %We show that $F(A) = 1$.
+ %\begin{subproof}
+ % Omitted.
+ %\end{subproof}
+ %
+ %We show that $F(B) = 0$.
+ %\begin{subproof}
+ % Omitted.
+ %\end{subproof}
+ %
+ %We show that $F$ is continuous.
+ %\begin{subproof}
+ % Omitted.
+ %\end{subproof}
+\end{proof}
+
+%\begin{theorem}\label{safe}
+% Contradiction.
+%\end{theorem}