summaryrefslogtreecommitdiff
path: root/library/topology
diff options
context:
space:
mode:
Diffstat (limited to 'library/topology')
-rw-r--r--library/topology/urysohn.tex116
1 files changed, 102 insertions, 14 deletions
diff --git a/library/topology/urysohn.tex b/library/topology/urysohn.tex
index 0c4052d..d8b1e14 100644
--- a/library/topology/urysohn.tex
+++ b/library/topology/urysohn.tex
@@ -402,18 +402,32 @@ The first tept will be a formalisation of chain constructions.
Omitted.
\end{proof}
+\begin{definition}\label{limit_sequence}
+ $x$ is the limit sequence of $f$ iff
+ $x$ is a sequence and $\indexset[x] = \dom{f}$ and
+ for all $n \in \indexset[x]$ we have
+ $\index[x](n) = f(n)$.
+\end{definition}
+\begin{definition}\label{realsminus}
+ $\realsminus = \{r \in \reals \mid r < \zero\}$.
+\end{definition}
+
+\begin{abbreviation}\label{realsplus}
+ $\realsplus = \reals \setminus \realsminus$.
+\end{abbreviation}
\begin{theorem}\label{urysohn}
Let $X$ be a urysohn space.
Suppose $A,B \in \closeds{X}$.
Suppose $A \inter B$ is empty.
+ Suppose $\carrier[X]$ is inhabited.
There exist $f$ such that $f \in \funs{\carrier[X]}{\intervalclosed{\zero}{1}}$
- and $f(A) = 0$ and $f(B)= 1$ and $f$ is continuous.
+ and $f(A) = \zero$ and $f(B)= 1$ and $f$ is continuous.
\end{theorem}
\begin{proof}
-
+
There exist $\eta$ such that $\carrier[\eta] = \{A, (\carrier[X] \setminus B)\}$
and $\indexset[\eta] = \{\zero, 1\}$
and $\index[\eta](\zero) = A$
@@ -498,29 +512,103 @@ The first tept will be a formalisation of chain constructions.
\}$.
Let $\gamma(n) = \apply{\gamma}{n}$ for $n \in \naturals$.
-
+ %We show that there exist $\kappa$ such that $\kappa$ is the limit sequence of $\gamma$.
+ %\begin{subproof}
+ % Omitted.
+ %\end{subproof}
- We show that there exist $F$ such that
- $F \in \funs{\carrier[X]}{\intervalclosed{\zero}{1}}$ and
- for all $x \in \carrier[X]$ we have
- there exist $k \in \intervalclosed{\zero}{1}$
- such that $F(x) = k$ and
- for all $\epsilon \in \reals$ such that $\epsilon > \zero$
- we have there exist $N \in \naturals$ such that
- for all $N' \in \naturals$ such that $N' > N$
- we have $\abs{(k - \apply{\gamma(N')}{x})} \leq \epsilon$.
+ %Let $\gamma(n)(x) = \apply{\gamma(n)}{x}$ for $x\in \carrier[X]$
+
+ We show that for all $n \in \naturals$ we have $\gamma(n)$
+ is a function from $\carrier[X]$ to $\reals$.
\begin{subproof}
Omitted.
\end{subproof}
+
+
+ We show that there exist $g$ such that
+ for all $x \in \carrier[X]$ we have
+ there exist $k \in \reals$ such that
+ for all $\epsilon \in \reals$ such that $\epsilon > \zero$ we have
+ there exist $N \in \naturals$ such that
+ for all $N' \in \naturals$ such that $N' > N$ we have
+ $\abs{\apply{\gamma(n)}{x} - k} < \epsilon$ and $g(x)= k$.
+ \begin{subproof}
+
+ %Let $G(x) = \{k \in \carrier[X] \mid \forall \epsilon \in \realsplus. \exists N \in \naturals. \forall N' \in \naturals. (N' > N) \land (\abs{\apply{\gamma(n)}{x} - k} < \epsilon)\}$ for $x \in \carrier[X]$.
+%
+ %We show that for all $x \in \carrier[X]$ we have $G(x)$ has cardinality $1$.
+ %\begin{subproof}
+ % Omitted.
+ %\end{subproof}
+%
+ %Let $H(x) = \unions{G(x)}$ for $x \in \carrier[X]$.
+ %For all $x \in \carrier[X]$ we have $\{H(x)\} = G(x)$.
+
+ We show that for all $x \in \carrier[X]$ we have
+ there exist $k \in \reals$ such that
+ for all $\epsilon \in \reals$ such that $\epsilon > \zero$ we have
+ there exist $N \in \naturals$ such that
+ for all $N' \in \naturals$ such that $N' > N$ we have
+ $\abs{\apply{\gamma(n)}{x} - k} < \epsilon$.
+ \begin{subproof}
+ Omitted.
+ \end{subproof}
+
+
+ \end{subproof}
+
+
+ %Let $S(x) = \{(n,x) \mid n \in naturals \mid x = (\gamma(n))(x)\}$.
+
+ %Let $S(x)
+
+ %We show that there exist $F$ such that
+ %for all $x \in \carrier[X]$ we have $F(x)$ is
+
+
+ %We show that there exist $F$ such that
+ %$F \in \funs{\carrier[X]}{\intervalclosed{\zero}{1}}$ and
+ %for all $x \in \carrier[X]$ we have
+ %there exist $k \in \intervalclosed{\zero}{1}$
+ %such that $F(x) = k$ and
+ %for all $\epsilon \in \reals$ such that $\epsilon > \zero$
+ %we have there exist $N \in \naturals$ such that
+ %for all $N' \in \naturals$ such that $N' > N$
+ %we have $\abs{(k - \apply{\gamma(N')}{x})} \leq \epsilon$.
+ %\begin{subproof}
+ % Omitted.
+ %\end{subproof}
+
+
We show that $F \in \funs{\carrier[X]}{\intervalclosed{\zero}{1}}$.
- \begin{subproof}
+ \begin{subproof}
Omitted.
+
+ %It suffices to show that $\dom{F} = \carrier[X]$ and
+ %$F \in \rels{\carrier[X]}{\intervalclosed{\zero}{1}}$ and $F$ is right-unique.
+ %
+ %We show that $F \in \rels{\carrier[X]}{\intervalclosed{\zero}{1}}$.
+ %\begin{subproof}
+ % It suffices to show that $F \in \pow{\carrier[X] \times \intervalclosed{\zero}{1}}$.
+ % It suffices to show that for all $w \in F$ we have $w \in (\carrier[X] \times \intervalclosed{\zero}{1})$.
+%
+ % Fix $w \in F$.
+%
+ % %Take $x$ such that there exist $k \in \intervalclosed{\zero}{1}$ such that $w = (x,k)$.
+%
+%
+ %\end{subproof}
+ %
+%
+%
+ %Trivial.
\end{subproof}
- We show that $F(A) = 0$.
+ We show that $F(A) = \zero$.
\begin{subproof}
Omitted.
\end{subproof}