summaryrefslogtreecommitdiff
path: root/library/topology
diff options
context:
space:
mode:
Diffstat (limited to 'library/topology')
-rw-r--r--library/topology/urysohn.tex133
1 files changed, 125 insertions, 8 deletions
diff --git a/library/topology/urysohn.tex b/library/topology/urysohn.tex
index c795db8..bb28116 100644
--- a/library/topology/urysohn.tex
+++ b/library/topology/urysohn.tex
@@ -147,9 +147,9 @@ The first tept will be a formalisation of chain constructions.
\end{definition}
\begin{definition}\label{refinmant}
- $C$ is a refinmant of $C'$ iff for all $x \in C'$ we have $x \in C$ and
- for all $y \in C'$ such that $y \subset x$ we have there exist $c \in C$ such that $y \subset c \subset x$
- and for all $g \in C$ such that $g \neq c$ we have not $y \subset g \subset x$.
+ $C'$ is a refinmant of $C$ iff for all $x \in C$ we have $x \in C'$ and
+ for all $y \in C$ such that $y \subset x$ we have there exist $c \in C'$ such that $y \subset c \subset x$
+ and for all $g \in C'$ such that $g \neq c$ we have not $y \subset g \subset x$.
\end{definition}
\begin{abbreviation}\label{two}
@@ -165,14 +165,131 @@ The first tept will be a formalisation of chain constructions.
\end{lemma}
\begin{inductive}\label{power_of_two}
- Define $\powerOfTwoSet \subseteq \naturals$.
+ Define $\powerOfTwoSet \subseteq (\naturals \times \naturals)$.
\begin{enumerate}
- \item $\two \in \powerOfTwoSet$.
- \item If $n \in \powerOfTwoSet$, then $n \rmul \two \in \powerOfTwoSet$.
+ \item $(\zero, 1) \in \powerOfTwoSet$.
+ \item If $(m,k) \in \powerOfTwoSet$, then $(m+1, k \rmul \two) \in \powerOfTwoSet$.
\end{enumerate}
-
\end{inductive}
+\begin{abbreviation}\label{pot}
+ $\pot = \powerOfTwoSet$.
+\end{abbreviation}
+
+\begin{lemma}\label{dom_pot}
+ $\dom{\pot} = \naturals$.
+\end{lemma}
+\begin{proof}
+ Omitted.
+\end{proof}
+
+\begin{lemma}\label{ran_pot}
+ $\ran{\pot} \subseteq \naturals$.
+\end{lemma}
+
+
+
+
+
+
+
+
+\begin{proposition}\label{urysohnchain_induction_begin}
+ Let $X$ be a urysohn space.
+ Suppose $A,B \in \closeds{X}$.
+ Suppose $A \inter B$ is empty.
+ Suppose $U = \{A,(X \setminus B)\}$.
+ Suppose $\indexset[U]= \{\zero, 1\}$.
+ Suppose $\index[U](\zero) = A$.
+ Suppose $\index[U](1) = (X \setminus B)$.
+ Then $U$ is a urysohnchain in $X$.
+\end{proposition}
+\begin{proof}
+ We show that $U$ is a sequence.
+ \begin{subproof}
+ Omitted.
+ \end{subproof}
+
+ We show that $A \subseteq (X \setminus B)$.
+ \begin{subproof}
+ Omitted.
+ \end{subproof}
+
+ We show that $U$ is a chain of subsets.
+ \begin{subproof}
+ For all $n \in \indexset[U]$ we have $n = \zero \lor n = 1$.
+ It suffices to show that for all $n \in \indexset[U]$ we have
+ for all $m \in \indexset[U]$ such that
+ $n < m$ we have $\index[U](n) \subseteq \index[U](m)$.
+ Fix $n \in \indexset[U]$.
+ Fix $m \in \indexset[U]$.
+ \begin{byCase}
+ \caseOf{$n = 1$.} Trivial.
+ \caseOf{$n = \zero$.}
+ \begin{byCase}
+ \caseOf{$m = \zero$.} Trivial.
+ \caseOf{$m = 1$.} Omitted.
+ \end{byCase}
+ \end{byCase}
+ \end{subproof}
+
+ $A \subseteq X$.
+ $(X \setminus B) \subseteq X$.
+ We show that for all $x \in U$ we have $x \subseteq X$.
+ \begin{subproof}
+ Omitted.
+ \end{subproof}
+
+ We show that $\closure{A}{X} \subseteq \interior{(X \setminus B)}{X}$.
+ \begin{subproof}
+ Omitted.
+ \end{subproof}
+ We show that for all $n,m \in \indexset[U]$ such that $n < m$ we have
+ $\closure{\index[U](n)}{X} \subseteq \interior{\index[U](m)}{X}$.
+ \begin{subproof}
+ Omitted.
+ \end{subproof}
+\end{proof}
+
+
+\begin{proposition}\label{t_four_propositon}
+ Let $X$ be a urysohn space.
+ Then for all $A,B \subseteq X$ such that $\closure{A}{X} \subseteq \interior{B}{X}$
+ we have there exists $C \subseteq X$ such that
+ $\closure{A}{X} \subseteq \interior{C}{X} \subseteq \closure{C}{X} \subseteq \interior{B}{X}$.
+\end{proposition}
+\begin{proof}
+ Omitted.
+\end{proof}
+
+\begin{proposition}\label{urysohnchain_induction_step_existence}
+ Let $X$ be a urysohn space.
+ Suppose $U$ is a urysohnchain in $X$.
+ Then there exist $U'$ such that $U'$ is a refinmant of $U$ and $U'$ is a urysohnchain in $X$.
+\end{proposition}
+\begin{proof}
+
+
+ %\begin{definition}\label{refinmant}
+ % $C'$ is a refinmant of $C$ iff for all $x \in C$ we have $x \in C'$ and
+ % for all $y \in C$ such that $y \subset x$
+ % we have there exist $c \in C'$ such that $y \subset c \subset x$
+ % and for all $g \in C'$ such that $g \neq c$ we have not $y \subset g \subset x$.
+ %\end{definition}
+
+
+
+
+\end{proof}
+
+
+
+
+
+
+
+
+
% The next thing we need to define is the uniform staircase function.
% This function has it's domain in $X$ and maps to the closed interval $[0,1]$.
% These functions should behave als follows,
@@ -195,7 +312,7 @@ The first tept will be a formalisation of chain constructions.
\begin{theorem}\label{urysohn}
Let $X$ be a urysohn space.
- Suppose $A,B \subseteq \closeds{X}$.
+ Suppose $A,B \in \closeds{X}$.
Suppose $A \inter B$ is empty.
There exist $f$ such that $f \in \funs{X}{\intervalclosed{\zero}{1}}$
and $f(A) = 1$ and $f(B)= 0$ and $f$ is continuous.