summaryrefslogtreecommitdiff
path: root/library/topology
diff options
context:
space:
mode:
Diffstat (limited to 'library/topology')
-rw-r--r--library/topology/urysohn.tex182
1 files changed, 132 insertions, 50 deletions
diff --git a/library/topology/urysohn.tex b/library/topology/urysohn.tex
index c94dbd4..ba9780a 100644
--- a/library/topology/urysohn.tex
+++ b/library/topology/urysohn.tex
@@ -1,11 +1,17 @@
\import{topology/topological-space.tex}
\import{topology/separation.tex}
\import{topology/continuous.tex}
+\import{topology/basis.tex}
\import{numbers.tex}
\import{function.tex}
\import{set.tex}
\import{cardinal.tex}
\import{relation.tex}
+\import{relation/uniqueness.tex}
+\import{set/cons.tex}
+\import{set/powerset.tex}
+\import{set/fixpoint.tex}
+\import{set/product.tex}
\section{Urysohns Lemma}
% In this section we want to proof Urysohns lemma.
@@ -337,33 +343,8 @@ The first tept will be a formalisation of chain constructions.
\end{proof}
-\begin{lemma}\label{fraction1}
- Let $x \in \reals$.
- Then for all $y \in \reals$ such that $x \neq y$ we have there exists $r \in \rationals$ such that $y < r < x$ or $x < r < y$.
-\end{lemma}
-\begin{proof}
- Omitted.
-\end{proof}
-\begin{lemma}\label{frection2}
- Suppose $a,b \in \reals$.
- Suppose $a < b$.
- Then $\intervalopen{a}{b}$ is infinite.
-\end{lemma}
-\begin{proof}
- Omitted.
-\end{proof}
-\begin{lemma}\label{frection3}
- Suppose $a,b \in \reals$.
- Suppose $\zero < a < 1$.
- Suppose $\zero < b < 1$.
- % Here take exist n such that n/2^n is between a and b
- T
-\end{lemma}
-\begin{proof}
- Omitted.
-\end{proof}
\begin{proposition}\label{existence_of_staircase_function}
@@ -449,6 +430,86 @@ The first tept will be a formalisation of chain constructions.
$\realsplus = \reals \setminus \realsminus$.
\end{abbreviation}
+\begin{proposition}\label{intervalclosed_subseteq_reals}
+ Suppose $a,b \in \reals$.
+ Suppose $a < b$.
+ Then $\intervalclosed{a}{b} \subseteq \reals$.
+\end{proposition}
+
+
+
+\begin{lemma}\label{fraction1}
+ Let $x \in \reals$.
+ Then for all $y \in \reals$ such that $x \neq y$ we have there exists $r \in \rationals$ such that $y < r < x$ or $x < r < y$.
+\end{lemma}
+\begin{proof}
+ Omitted.
+\end{proof}
+
+\begin{lemma}\label{frection2}
+ Suppose $a,b \in \reals$.
+ Suppose $a < b$.
+ Then $\intervalopen{a}{b}$ is infinite.
+\end{lemma}
+\begin{proof}
+ Omitted.
+\end{proof}
+
+\begin{lemma}\label{frection3}
+ Suppose $a \in \reals$.
+ Suppose $a < \zero$.
+ Then there exist $N \in \naturals$ such that for all $N' \in \naturals$ such that $N' > N$ we have $\zero < \rfrac{1}{\pot(N')} < a$.
+\end{lemma}
+\begin{proof}
+ Omitted.
+\end{proof}
+
+\begin{proposition}\label{fraction4}
+ Suppose $a,b,\epsilon \in \reals$.
+ Suppose $\epsilon > \zero$.
+ $\abs{a - b} < \epsilon$ iff $b \in \intervalopen{(a - \epsilon)}{(a + \epsilon)}$.
+\end{proposition}
+\begin{proof}
+ Omitted.
+\end{proof}
+
+\begin{proposition}\label{fraction5}
+ Suppose $a,b,\epsilon \in \reals$.
+ Suppose $\epsilon > \zero$.
+ $b \in \intervalopen{(a - \epsilon)}{(a + \epsilon)}$ iff $a \in \intervalopen{(b - \epsilon)}{(b + \epsilon)}$.
+\end{proposition}
+\begin{proof}
+ Omitted.
+\end{proof}
+
+\begin{proposition}\label{fraction6}
+ Suppose $a,\epsilon \in \reals$.
+ Suppose $\epsilon > \zero$.
+ $\intervalopen{(a - \epsilon)}{(a + \epsilon)} = \{r \in \reals \mid (a - \epsilon) < r < (a + \epsilon)\} $.
+\end{proposition}
+
+\begin{abbreviation}\label{epsilonball}
+ $\epsBall{a}{\epsilon} = \intervalopen{(a - \epsilon)}{(a + \epsilon)}$.
+\end{abbreviation}
+
+\begin{proposition}\label{fraction7}
+ Suppose $a,\epsilon \in \reals$.
+ Suppose $\epsilon > \zero$.
+ Then there exist $b \in \rationals$ such that $b \in \epsBall{a}{\epsilon}$.
+\end{proposition}
+\begin{proof}
+ Omitted.
+\end{proof}
+
+
+
+% Note this could maybe reslove some issues!!!!
+\begin{definition}\label{sequencetwo}
+ $Z$ is a sequencetwo iff $Z = (N,f,B)$ and $N \subseteq \naturals$ and $f$ is a bijection from $N$ to $B$.
+\end{definition}
+
+
+
\begin{theorem}\label{urysohn}
Let $X$ be a urysohn space.
@@ -483,6 +544,8 @@ The first tept will be a formalisation of chain constructions.
Omitted.
\end{subproof}
+ For all $n \in \naturals$ we have $\index[\zeta](n)$ is a urysohnchain in $X$.
+
We show that for all $n \in \indexset[\zeta]$ we have $\index[\zeta](n)$ has cardinality $\pot(n)$.
\begin{subproof}
Omitted.
@@ -493,6 +556,11 @@ The first tept will be a formalisation of chain constructions.
Omitted.
\end{subproof}
+ We show that for all $m \in \naturals$ we have $\pot(m) \in \naturals$.
+ \begin{subproof}
+ Omitted.
+ \end{subproof}
+
We show that for all $m \in \indexset[\zeta]$ we have there exist $f$ such that $f \in \funs{\carrier[X]}{\intervalclosed{\zero}{1}}$
and for all $n \in \indexset[\index[\zeta](m)]$ we have for all $x \in \index[\index[\zeta](m)](n)$
@@ -545,37 +613,56 @@ The first tept will be a formalisation of chain constructions.
Let $\gamma(n) = \apply{\gamma}{n}$ for $n \in \naturals$.
-
We show that for all $n \in \naturals$ we have $\gamma(n)$
is a function from $\carrier[X]$ to $\reals$.
\begin{subproof}
Omitted.
\end{subproof}
- We show that for all $n \in \naturals$ for all $x \in \carrier[X]$ we have $\apply{\gamma(n)}{x} \in \intervalclosed{\zero}{1}$.
+
+ We show that for all $n \in \naturals$ we have $\gamma(n)$
+ is a function from $\carrier[X]$ to $\intervalclosed{\zero}{1}$.
\begin{subproof}
Omitted.
\end{subproof}
+ We show that $\gamma$ is a function from $\naturals$ to $\reals$.
+ \begin{subproof}
+ Omitted.
+ \end{subproof}
+
+ We show that for all $x,k,n$ such that $n\in \naturals$ and $k \in \naturals$ and $x \in \index[\index[\zeta](n)](k)$ we have $\apply{\gamma(n)}{x} = \rfrac{k}{\pot(n)}$.
+ \begin{subproof}
+ Omitted.
+ \end{subproof}
+
+ We show that for all $n \in \naturals$ for all $x \in \carrier[X]$ we have $\apply{\gamma(n)}{x} \in \intervalclosed{\zero}{1}$.
+ \begin{subproof}
+ Fix $n \in \naturals$.
+ Fix $x \in \carrier[X]$.
+ \end{subproof}
- We show that there exist $g$ such that
- for all $x \in \carrier[X]$ we have
- there exist $k \in \reals$ such that
- for all $\epsilon \in \reals$ such that $\epsilon > \zero$ we have
- there exist $N \in \naturals$ such that
- for all $N' \in \naturals$ such that $N' > N$ we have
- $\abs{\apply{\gamma(n)}{x} - k} < \epsilon$ and $g(x)= k$.
+
+ We show that
+ if $h$ is a function from $\naturals$ to $\reals$ and for all $n \in \naturals$ we have $h(n) \leq h(n+1)$ and there exist $B \in \reals$ such that $h(n) < B$
+ then there exist $k \in \reals$ such that for all $m \in \naturals$ we have $h(m) \leq k$ and for all $k' \in \reals$ such that $k' < k$ we have there exist $M \in \naturals$ such that $k' < h(M)$.
+ \begin{subproof}
+ Omitted.
+ \end{subproof}
+
+
+
+ We show that there exist $g$ such that for all $x \in \carrier[X]$ we have there exist $k \in \reals$ such that $g(x)= k$ and for all $\epsilon \in \reals$ such that $\epsilon > \zero$ we have there exist $N \in \naturals$ such that for all $N' \in \naturals$ such that $N' > N$ we have $\abs{\apply{\gamma(N')}{x} - k} < \epsilon$.
\begin{subproof}
- We show that for all $x \in \carrier[X]$ we have
- there exist $k \in \reals$ such that
- for all $\epsilon \in \reals$ such that $\epsilon > \zero$ we have
- there exist $N \in \naturals$ such that
- for all $N' \in \naturals$ such that $N' > N$ we have
- $\abs{\apply{\gamma(n)}{x} - k} < \epsilon$.
+ We show that for all $x \in \carrier[X]$ we have there exist $k \in \reals$ such that for all $\epsilon \in \reals$ such that $\epsilon > \zero$ we have there exist $N \in \naturals$ such that for all $N' \in \naturals$ such that $N' > N$ we have $\abs{\apply{\gamma(N')}{x} - k} < \epsilon$.
\begin{subproof}
Fix $x \in \carrier[X]$.
- Follows by \cref{two_in_naturals,function_apply_default,reals_axiom_zero_in_reals,dom_emptyset,notin_emptyset,funs_type_apply,neg,minus,abs_behavior1}.
+
+
+
+ % Contradiction by \cref{two_in_naturals,function_apply_default,reals_axiom_zero_in_reals,dom_emptyset,notin_emptyset,funs_type_apply,neg,minus,abs_behavior1}.
+ %Follows by \cref{two_in_naturals,function_apply_default,reals_axiom_zero_in_reals,dom_emptyset,notin_emptyset,funs_type_apply,neg,minus,abs_behavior1}.
\end{subproof}
\end{subproof}
@@ -588,20 +675,15 @@ The first tept will be a formalisation of chain constructions.
Fix $x \in \dom{G}$.
It suffices to show that $g(x) \in \reals$.
- There exist $k \in \reals$ such that for all $\epsilon \in \reals$ such that $\epsilon > \zero$ we have there exist $N \in \naturals$ such that for all $N' \in \naturals$ such that $N' > N$ we have $\abs{\apply{\gamma(n)}{x} - k} < \epsilon$.
+ There exist $k \in \reals$ such that for all $\epsilon \in \reals$ such that $\epsilon > \zero$ we have there exist $N \in \naturals$ such that for all $N' \in \naturals$ such that $N' > N$ we have $\abs{\apply{\gamma(N')}{x} - k} < \epsilon$.
- We show that for all $\epsilon \in \reals$ such that $\epsilon > \zero$ we have there exist $N \in \naturals$ such that for all $N' \in \naturals$ such that $N' > N$ we have $\abs{\apply{\gamma(n)}{x} - g(x)} < \epsilon$ and $g(x)= k$.
+ We show that for all $\epsilon \in \reals$ such that $\epsilon > \zero$ we have there exist $N \in \naturals$ such that for all $N' \in \naturals$ such that $N' > N$ we have $\abs{\apply{\gamma(N')}{x} - g(x)} < \epsilon$ and $g(x)= k$.
\begin{subproof}
Fix $\epsilon \in \reals$.
- %Assume $\epsilon > \zero$.
- %Take $N' \in \naturals$ such that $\epsilon > \rfrac{1}{\pot(N')}$.
- \end{subproof}
-
-
-
+
+ \end{subproof}
Follows by \cref{apply,plus_one_order,ordinal_iff_suc_ordinal,natural_number_is_ordinal,subseteq,naturals_subseteq_reals,naturals_is_equal_to_two_times_naturals,reals_one_bigger_zero,one_in_reals,ordinal_prec_trichotomy,omega_is_an_ordinal,suc_intro_self,two_in_naturals,in_asymmetric,suc}.
-
\end{subproof}
We show that for all $x \in \dom{G}$ we have $\zero \leq G(x) \leq 1$.