summaryrefslogtreecommitdiff
path: root/library
diff options
context:
space:
mode:
Diffstat (limited to 'library')
-rw-r--r--library/set.tex14
1 files changed, 11 insertions, 3 deletions
diff --git a/library/set.tex b/library/set.tex
index 69b9526..acbc71c 100644
--- a/library/set.tex
+++ b/library/set.tex
@@ -385,6 +385,11 @@ The $\operatorname{\textsf{cons}}$ operation is determined by the following axio
Follows by set extensionality.
\end{proof}
+\begin{proposition}\label{union_subsets_is_subset}
+ Suppose $A\subseteq C$ and $B\subseteq C$.
+ Then $A\union B\subseteq C$.
+\end{proposition}
+
\begin{proposition}\label{subseteq_union_iff}
$A\union B\subseteq C$ iff $A\subseteq C$ and $B\subseteq C$.
\end{proposition}
@@ -626,7 +631,7 @@ The $\operatorname{\textsf{cons}}$ operation is determined by the following axio
\begin{proposition}[Binary intersection over binary union]%
\label{inter_distrib_union}
- $x\inter (y\union z) = (x\inter y)\union (x\inter z)$.
+ $A\inter (B\union C) = (A\inter B)\union (A\inter C)$.
\end{proposition}
\begin{proof}
Follows by set extensionality.
@@ -643,10 +648,13 @@ The $\operatorname{\textsf{cons}}$ operation is determined by the following axio
% Halmos, Naive Set Theory, page 16
\begin{proposition}\label{union_inter_assoc_intro}
Suppose $C\subseteq A$.
- Then $(A\inter B)\union C = A\inter (B\union C)$.
+ Then $A\inter (B\union C) = (A\inter B)\union C$.
\end{proposition}
\begin{proof}
- Follows by set extensionality.
+ \begin{align*}
+ A\inter (B\union C) &= (A\inter B)\union (A\inter C) \explanation{by \cref{inter_distrib_union}}\\
+ &= (A\inter B)\union C \explanation{by \cref{inter_absorb_supseteq_left}}
+ \end{align*}
\end{proof}
% Halmos, Naive Set Theory, page 16