summaryrefslogtreecommitdiff
path: root/library
diff options
context:
space:
mode:
Diffstat (limited to 'library')
-rw-r--r--library/numbers.tex10
-rw-r--r--library/topology/real-topological-space.tex200
2 files changed, 194 insertions, 16 deletions
diff --git a/library/numbers.tex b/library/numbers.tex
index 8624260..406553e 100644
--- a/library/numbers.tex
+++ b/library/numbers.tex
@@ -792,7 +792,15 @@ Laws of the order on the reals
\end{definition}
\begin{definition}\label{intervalopen_infinite_right}
- $\intervalopenInfiniteRight{a} = \{ x \in \reals \mid a < x\}$.
+ $\intervalopenInfiniteRight{a} = \{ x \in \reals \mid x > a\}$.
+\end{definition}
+
+\begin{definition}\label{intervalclosed_infinite_left}
+ $\intervalclosedInfiniteLeft{b} = \{ x \in \reals \mid x \leq b\}$.
+\end{definition}
+
+\begin{definition}\label{intervalclosed_infinite_right}
+ $\intervalclosedInfiniteRight{a} = \{ x \in \reals \mid x \geq a\}$.
\end{definition}
diff --git a/library/topology/real-topological-space.tex b/library/topology/real-topological-space.tex
index b3efa20..e5e17ef 100644
--- a/library/topology/real-topological-space.tex
+++ b/library/topology/real-topological-space.tex
@@ -580,28 +580,198 @@ For all $x,\delta$ such that $x \in \reals \land \delta \in \realsplus$ we have
Then $\intervalopenInfiniteRight{a} \in \opens[\reals]$.
\end{proposition}
\begin{proof}
- Let $I = \{\neg{b} \mid b \in \intervalopenInfiniteRight{a} \}$.
- Let $f(x) = \neg{x}$ for $x \in \reals$.
- $f$ is a function from $\reals$ to $\reals$.
- We show that $f$ is continuous.
+ Let $E = \{ B \in \pow{\reals} \mid \exists x \in \intervalopenInfiniteRight{a} . \exists \delta \in \realsplus . B = \epsBall{x}{\delta} \land a \notin \epsBall{x}{\delta} \}$.
+ We show that for all $x \in \intervalopenInfiniteRight{a}$ we have there exists $e \in E$ such that $x \in e$.
\begin{subproof}
- It suffices to show that for all $b \in \topoBasisReals$ we have $\preimg{f}{b} \in \opens[\reals]$.
- Fix $b \in \topoBasisReals$.
- Take $x, \epsilon$ such that $x \in \reals$ and $\epsilon \in \realsplus$ and $b = \epsBall{x}{\epsilon}$.
- Let $y = \neg{x}$.
- It suffices to show that $\preimg{f}{b} \in \topoBasisReals$ by \cref{topological_space_reals,topological_basis_reals_is_basis,basis_is_in_genopens,cons_remove,cons_subseteq_iff}.
- It suffices to show that $\epsBall{y}{\epsilon} = \preimg{f}{\epsBall{x}{\epsilon}}$.
- Follows by set extensionality.
+ Fix $x \in \intervalopenInfiniteRight{a}$.
+ Then $a < x$.
+ Take $\delta' \in \realsplus$ such that $a \notin \epsBall{x}{\delta'}$.
+ $x \in \epsBall{x}{\delta'}$ by \cref{intervalopen,epsilon_ball,reals_addition_minus_behavior1,reals_order_minus_positiv,minus,reals_add,realsplus,intervalopen_infinite_right}.
+ $a \notin \epsBall{x}{\delta'}$.
+ $\epsBall{x}{\delta'} \in E$.
\end{subproof}
- $\intervalopenInfiniteLeft{a} \in \opens[\reals]$.
- We show that $\preimg{f}{\intervalopenInfiniteLeft{a}} = \intervalopenInfiniteRight{a}$.
+ $E \subseteq \topoBasisReals$.
+ We show that $\unions{E} = \intervalopenInfiniteRight{a}$.
\begin{subproof}
- Omitted.
+ We show that $\unions{E} \subseteq \intervalopenInfiniteRight{a}$.
+ \begin{subproof}
+ It suffices to show that for all $x \in \unions{E}$ we have $x \in \intervalopenInfiniteRight{a}$.
+ Fix $x \in \unions{E}$.
+ Take $e \in E$ such that $x \in e$.
+ $x \in \reals$.
+ Take $x',\delta'$ such that $x' \in \reals$ and $\delta' \in \realsplus$ and $e = \epsBall{x'}{\delta'}$ by \cref{epsilon_ball,minus,topo_basis_reals_eps_iff,setminus,setminus_emptyset,elem_subseteq}.
+ $\epsBall{x'}{\delta'} \in E$.
+ We show that for all $y \in e$ we have $y > a$.
+ \begin{subproof}
+ Fix $y \in e$.
+ Then $y \in \epsBall{x'}{\delta'}$.
+ $e = \epsBall{x'}{\delta'}$.
+ There exists $x'' \in \intervalopenInfiniteRight{a}$ such that there exists $\delta'' \in \realsplus$ such that $e = \epsBall{x''}{\delta''}$ and $a \notin \epsBall{x''}{\delta''}$.
+ Take $x'',\delta''$ such that $x'' \in \intervalopenInfiniteRight{a}$ and $\delta'' \in \realsplus$ and $e = \epsBall{x''}{\delta''}$ and $a \notin \epsBall{x''}{\delta''}$.
+ Suppose not.
+ Take $y' \in e$ such that $y' < a$.
+ $x'' > a$.
+ $(x'' - \delta'') < y' < (x'' + \delta'')$.
+ $(x'' - \delta'') < x'' < (x'' + \delta'')$.
+ Then $x'' > a > y'$.
+ Therefore $(x'' - \delta'') > a > (x'' + \delta'')$ by \cref{realspuls_in_reals_minus,intervalopen_infinite_right,reals_order_is_transitive,reals_add,realsplus_in_reals,powerset_elim,subseteq,epsball_are_connected_in_reals,subseteq}.
+ Then $a \in e$ by \cref{reals_order_is_transitive,reals_order_total,reals_add,realsplus,epsball_are_connected_in_reals,intervalopen_infinite_right,neq_witness}.
+ Contradiction.
+ \end{subproof}
+ $x > a$.
+ Then $x \in \intervalopenInfiniteRight{a}$.
+ \end{subproof}
+ We show that $\intervalopenInfiniteRight{a} \subseteq \unions{E}$.
+ \begin{subproof}
+ Trivial.
+ \end{subproof}
\end{subproof}
- Then $\intervalopenInfiniteRight{a} \in \opens[\reals]$ by \cref{continuous,preim_eq_img_of_converse,openinterval_infinite_left_in_opens}.
+ $\unions{E} \in \opens[\reals]$.
+
+ %Let $I = \{\neg{b} \mid b \in \intervalopenInfiniteRight{a} \}$.
+ %Let $f(x) = \neg{x}$ for $x \in \reals$.
+ %$f$ is a function from $\reals$ to $\reals$.
+ %We show that $f$ is continuous.
+ %\begin{subproof}
+ % It suffices to show that for all $b \in \topoBasisReals$ we have $\preimg{f}{b} \in \opens[\reals]$.
+ % Fix $b \in \topoBasisReals$.
+ % Take $x, \epsilon$ such that $x \in \reals$ and $\epsilon \in \realsplus$ and $b = \epsBall{x}{\epsilon}$.
+ % Let $y = \neg{x}$.
+ % It suffices to show that $\preimg{f}{b} \in \topoBasisReals$ by \cref{topological_space_reals,topological_basis_reals_is_basis,basis_is_in_genopens,cons_remove,cons_subseteq_iff}.
+ % It suffices to show that $\epsBall{y}{\epsilon} = \preimg{f}{\epsBall{x}{\epsilon}}$.
+ % $\preimg{f}{\epsBall{x}{\epsilon}} \subseteq \reals$.
+ % $\epsBall{y}{\epsilon} \subseteq \reals$ by \cref{intervalopen,subseteq,minus,epsilon_ball}.
+ % %It suffices to show that for all $x \in \reals$ we have $x \in \epsBall{y}{\epsilon}$ iff $x \in \preimg{f}{\epsBall{x}{\epsilon}}$.
+ % %Fix $x \in \reals$.
+ % Let $u = (y - \epsilon)$.
+ % Let $v = (y + \epsilon)$.
+ % $u = \neg{(x - \epsilon)}$.
+ % $v = \neg{(x + \epsilon)}$.
+ % %$v - u = \epsilon + \epsilon$.
+ % We show that for all $z \in \epsBall{y}{\epsilon}$ we have $z \in \preimg{f}{\epsBall{x}{\epsilon}}$.
+ % \begin{subproof}
+ % Fix $z \in \epsBall{y}{\epsilon}$.
+ % Then $u < z < v$.
+ % Let $z' = z - u$.
+ % Then $z = u + z'$.
+ % Suppose not.
+ % Let $h = \neg{z}$.
+ % $\neg{h} = \neg{\neg{z}}$.
+ % $\neg{h} = z$.
+ % Then $f(h) = \neg{h}$.
+ % $f(h) = z$.
+ % Then $z \in \preimg{f}{\{h\}}$.
+%
+ % \end{subproof}
+ % We show that for all $z \in \preimg{f}{\epsBall{x}{\epsilon}}$ we have $z \in \epsBall{y}{\epsilon}$.
+ % \begin{subproof}
+ % Fix $z \in \preimg{f}{\epsBall{x}{\epsilon}}$.
+ % Take $h \in \epsBall{x}{\epsilon}$ such that $f(h) = z$.
+ % \end{subproof}
+ % Follows by set extensionality.
+ %\end{subproof}
+ %$\intervalopenInfiniteLeft{a} \in \opens[\reals]$.
+ %We show that $\preimg{f}{\intervalopenInfiniteLeft{a}} = \intervalopenInfiniteRight{a}$.
+ %\begin{subproof}
+ % Omitted.
+ %\end{subproof}
+ %Then $\intervalopenInfiniteRight{a} \in \opens[\reals]$ by \cref{continuous,preim_eq_img_of_converse,openinterval_infinite_left_in_opens}.
+\end{proof}
+
+\begin{lemma}\label{reals_as_union_of_open_closed_intervals1}
+ Suppose $a,b \in \reals$.
+ Then $\reals = \intervalopenInfiniteLeft{a} \union \intervalopenInfiniteRight{b} \union \intervalclosed{a}{b}$.
+\end{lemma}
+\begin{proof}
+ We show that for all $x \in \reals$ we have $x \in (\intervalopenInfiniteLeft{a} \union \intervalopenInfiniteRight{b} \union \intervalclosed{a}{b})$.
+ \begin{subproof}
+ Fix $x \in \reals$.
+ \end{subproof}
+\end{proof}
+
+\begin{lemma}\label{reals_as_union_of_open_closed_intervals2}
+ Suppose $a \in \reals$.
+ Then $\reals = \intervalopenInfiniteLeft{a} \union \intervalclosedInfiniteRight{a}$.
+\end{lemma}
+\begin{proof}
+ It suffices to show that for all $x \in \reals$ we have either $x \in \intervalopenInfiniteLeft{a}$ or $x \in \intervalclosedInfiniteRight{a}$.
+ Trivial.
+\end{proof}
+
+\begin{lemma}\label{reals_as_union_of_open_closed_intervals3}
+ Suppose $a \in \reals$.
+ Then $\reals = \intervalopenInfiniteRight{a} \union \intervalclosedInfiniteLeft{a}$.
+\end{lemma}
+\begin{proof}
+ It suffices to show that for all $x \in \reals$ we have either $x \in \intervalclosedInfiniteLeft{a}$ or $x \in \intervalopenInfiniteRight{a}$.
+ Trivial.
+\end{proof}
+
+\begin{lemma}\label{intersection_of_open_closed__infinite_intervals_open_right}
+ Suppose $a \in \reals$.
+ Then $\intervalopenInfiniteRight{a} \inter \intervalclosedInfiniteLeft{a} = \emptyset$.
+\end{lemma}
+
+\begin{lemma}\label{intersection_of_open_closed__infinite_intervals_open_left}
+ Suppose $a \in \reals$.
+ Then $\intervalopenInfiniteLeft{a} \inter \intervalclosedInfiniteRight{a} = \emptyset$.
+\end{lemma}
+
+\begin{proposition}\label{closedinterval_infinite_right_in_closeds}
+ Suppose $a \in \reals$.
+ Then $\intervalclosedInfiniteRight{a} \in \closeds{\reals}$.
+\end{proposition}
+\begin{proof}
+ $\intervalclosedInfiniteRight{a} = \reals \setminus \intervalopenInfiniteLeft{a}$.
+\end{proof}
+
+\begin{proposition}\label{closedinterval_infinite_left_in_closeds}
+ Suppose $a \in \reals$.
+ Then $\intervalclosedInfiniteLeft{a} \in \closeds{\reals}$.
+\end{proposition}
+\begin{proof}
+ $\intervalclosedInfiniteLeft{a} = \reals \setminus \intervalopenInfiniteRight{a}$.
+\end{proof}
+
+\begin{proposition}\label{closedinterval_eq_openintervals_setminus_reals}
+ Suppose $a,b \in \reals$.
+ Then $\reals \setminus (\intervalopenInfiniteLeft{a} \union \intervalopenInfiniteRight{b}) = \intervalclosed{a}{b}$.
+\end{proposition}
+\begin{proof}
+ We have $\intervalclosed{a}{b} \subseteq \reals$.
+ We show that $\reals \setminus (\intervalopenInfiniteLeft{a} \union \intervalopenInfiniteRight{b}) = (\reals \setminus \intervalopenInfiniteLeft{a}) \inter (\reals \setminus \intervalopenInfiniteRight{b})$.
+ \begin{subproof}
+ We show that for all $x \in \reals \setminus (\intervalopenInfiniteLeft{a} \union \intervalopenInfiniteRight{b})$ we have $x \in (\reals \setminus \intervalopenInfiniteLeft{a}) \inter (\reals \setminus \intervalopenInfiniteRight{b})$.
+ \begin{subproof}
+ Fix $x \in \reals \setminus (\intervalopenInfiniteLeft{a} \union \intervalopenInfiniteRight{b})$.
+ Then $x \in \reals \setminus \intervalopenInfiniteLeft{a}$.
+ Then $x \in \reals \setminus \intervalopenInfiniteRight{b}$.
+ \end{subproof}
+ We show that for all $x \in (\reals \setminus \intervalopenInfiniteLeft{a}) \inter (\reals \setminus \intervalopenInfiniteRight{b})$ we have $x \in \reals \setminus (\intervalopenInfiniteLeft{a} \union \intervalopenInfiniteRight{b})$.
+ \begin{subproof}
+ Fix $x \in (\reals \setminus \intervalopenInfiniteLeft{a}) \inter (\reals \setminus \intervalopenInfiniteRight{b})$.
+ Then $x \in (\reals \setminus \intervalopenInfiniteLeft{a})$.
+ Then $x \in (\reals \setminus \intervalopenInfiniteRight{b})$.
+ \end{subproof}
+ \end{subproof}
+ We show that $\reals \setminus \intervalopenInfiniteLeft{a} = \intervalclosedInfiniteRight{a}$.
+ \begin{subproof}
+ For all $x \in \intervalclosedInfiniteRight{a}$ we have $x \geq a$.
+ For all $x \in (\reals \setminus \intervalopenInfiniteLeft{a})$ we have $x \geq a$.
+ Follows by set extensionality.
+ \end{subproof}
+ $\reals \setminus \intervalopenInfiniteRight{b} = \intervalclosedInfiniteLeft{b}$.
+ It suffices to show that $\intervalclosedInfiniteLeft{b} \inter \intervalclosedInfiniteRight{a} = \intervalclosed{a}{b}$.
+ For all $x \in \intervalclosed{a}{b}$ we have $a \leq x \leq b$.
+ For all $x \in (\intervalclosedInfiniteLeft{b} \inter \intervalclosedInfiniteRight{a})$ we have $a \leq x \leq b$.
+ Follows by set extensionality.
\end{proof}
\begin{proposition}\label{closedinterval_is_closed}
Suppose $a,b \in \reals$.
Then $\intervalclosed{a}{b} \in \closeds{\reals}$.
\end{proposition}
+\begin{proof}
+ We have $\reals = \intervalopenInfiniteLeft{a} \union \intervalopenInfiniteRight{b} \union \intervalclosed{a}{b}$.
+ It suffices to show that $\reals \setminus (\intervalopenInfiniteLeft{a} \union \intervalopenInfiniteRight{b}) = \intervalclosed{a}{b}$ by \cref{closeds,setminus_subseteq,powerset_intro,closed_minus_open_is_closed,opens_type,subseteq_refl,union_open,is_closed_in,reals_carrier_reals,setminus_self,emptyset_open,reals_is_topological_space,openinterval_infinite_left_in_opens,openinterval_infinite_right_in_opens}.
+\end{proof}