summaryrefslogtreecommitdiff
path: root/library
diff options
context:
space:
mode:
Diffstat (limited to 'library')
-rw-r--r--library/topology/urysohn.tex51
1 files changed, 46 insertions, 5 deletions
diff --git a/library/topology/urysohn.tex b/library/topology/urysohn.tex
index 3be3c30..c94dbd4 100644
--- a/library/topology/urysohn.tex
+++ b/library/topology/urysohn.tex
@@ -98,6 +98,10 @@ The first tept will be a formalisation of chain constructions.
$\intervalclosed{a}{b} = \{x \in \reals \mid a \leq x \leq b\}$.
\end{definition}
+\begin{definition}\label{intervalopen}
+ $\intervalopen{a}{b} = \{ x \in \reals \mid a < x < b\}$.
+\end{definition}
+
\begin{struct}\label{staircase_function}
A staircase function $f$ is a onesorted structure equipped with
@@ -333,6 +337,34 @@ The first tept will be a formalisation of chain constructions.
\end{proof}
+\begin{lemma}\label{fraction1}
+ Let $x \in \reals$.
+ Then for all $y \in \reals$ such that $x \neq y$ we have there exists $r \in \rationals$ such that $y < r < x$ or $x < r < y$.
+\end{lemma}
+\begin{proof}
+ Omitted.
+\end{proof}
+
+\begin{lemma}\label{frection2}
+ Suppose $a,b \in \reals$.
+ Suppose $a < b$.
+ Then $\intervalopen{a}{b}$ is infinite.
+\end{lemma}
+\begin{proof}
+ Omitted.
+\end{proof}
+
+\begin{lemma}\label{frection3}
+ Suppose $a,b \in \reals$.
+ Suppose $\zero < a < 1$.
+ Suppose $\zero < b < 1$.
+ % Here take exist n such that n/2^n is between a and b
+ T
+\end{lemma}
+\begin{proof}
+ Omitted.
+\end{proof}
+
\begin{proposition}\label{existence_of_staircase_function}
Let $X$ be a urysohn space.
@@ -489,8 +521,9 @@ The first tept will be a formalisation of chain constructions.
% (n,f) \in \gamma <=> \phi(n,f)
- % with \phi (n,f) := (x \in (A_k) \ (A_k-1)) => f(x) = ( k / 2^n )
- % \/ (x \notin A_k for all k \in {1,..,n} => f(x) = 1
+ % with \phi (n,f) :=
+ % (x \in (A_k) \ (A_k-1)) ==> f(x) = ( k / 2^n )
+ % \/ (x \notin A_k for all k \in {1,..,n} ==> f(x) = 1
( (n' = \zero)
\land (x \in \index[\index[\zeta](n)](n'))
@@ -556,7 +589,15 @@ The first tept will be a formalisation of chain constructions.
It suffices to show that $g(x) \in \reals$.
There exist $k \in \reals$ such that for all $\epsilon \in \reals$ such that $\epsilon > \zero$ we have there exist $N \in \naturals$ such that for all $N' \in \naturals$ such that $N' > N$ we have $\abs{\apply{\gamma(n)}{x} - k} < \epsilon$.
- $g(x)= k$.
+
+ We show that for all $\epsilon \in \reals$ such that $\epsilon > \zero$ we have there exist $N \in \naturals$ such that for all $N' \in \naturals$ such that $N' > N$ we have $\abs{\apply{\gamma(n)}{x} - g(x)} < \epsilon$ and $g(x)= k$.
+ \begin{subproof}
+ Fix $\epsilon \in \reals$.
+ %Assume $\epsilon > \zero$.
+ %Take $N' \in \naturals$ such that $\epsilon > \rfrac{1}{\pot(N')}$.
+ \end{subproof}
+
+
Follows by \cref{apply,plus_one_order,ordinal_iff_suc_ordinal,natural_number_is_ordinal,subseteq,naturals_subseteq_reals,naturals_is_equal_to_two_times_naturals,reals_one_bigger_zero,one_in_reals,ordinal_prec_trichotomy,omega_is_an_ordinal,suc_intro_self,two_in_naturals,in_asymmetric,suc}.
@@ -569,13 +610,13 @@ The first tept will be a formalisation of chain constructions.
Then $x \in \carrier[X]$.
\begin{byCase}
\caseOf{$x \in A$.}
- For all $n \in \naturals$ we have $\apply{\gamma(n)}{x} = 0$.
+ For all $n \in \naturals$ we have $\apply{\gamma(n)}{x} = \zero$.
\caseOf{$x \notin A$.}
\begin{byCase}
\caseOf{$x \in B$.}
- OFor all $n \in \naturals$ we have $\apply{\gamma(n)}{x} = 1$.
+ For all $n \in \naturals$ we have $\apply{\gamma(n)}{x} = 1$.
\caseOf{$x \notin B$.}
Omitted.