summaryrefslogtreecommitdiff
path: root/library
diff options
context:
space:
mode:
Diffstat (limited to 'library')
-rw-r--r--library/numbers.tex131
-rw-r--r--library/topology/continuous.tex14
-rw-r--r--library/topology/urysohn.tex274
3 files changed, 360 insertions, 59 deletions
diff --git a/library/numbers.tex b/library/numbers.tex
index 0bfae2d..7d1b058 100644
--- a/library/numbers.tex
+++ b/library/numbers.tex
@@ -348,6 +348,9 @@ We seen before that we can proof the common behavior of the naturals.
Since we now want to get furhter in a more efficient way, we introduce the basis axioms of the reals.
Such that we can introduce the integers and raitionals as smooth as possible.
+
+
+The operations Multiplication and addition is closed in the reals
\begin{axiom}\label{reals_rmul}
For all $n,m \in \reals$ we have $(n \rmul m) \in \reals$.
\end{axiom}
@@ -358,10 +361,16 @@ Such that we can introduce the integers and raitionals as smooth as possible.
+
+Commutivatiy of the standart operations
\begin{axiom}\label{reals_axiom_kommu}
For all $x,y \in \reals$ $x + y = y + x$ and $x \rmul y = y \rmul x$.
\end{axiom}
+
+
+
+Existence of one and Zero
\begin{axiom}\label{reals_axiom_zero}
For all $x \in \reals$ $x + \zero = x$.
\end{axiom}
@@ -370,6 +379,9 @@ Such that we can introduce the integers and raitionals as smooth as possible.
For all $x \in \reals$ we have $x \rmul 1 = x$.
\end{axiom}
+
+
+The Existence of Inverse of both operations
\begin{axiom}\label{reals_axiom_add_invers}
For all $x \in \reals$ there exist $y \in \reals$ such that $x + y = \zero$.
\end{axiom}
@@ -378,6 +390,9 @@ Such that we can introduce the integers and raitionals as smooth as possible.
For all $x \in \reals$ such that $x \neq \zero$ there exist $y \in \reals$ such that $x \rmul y = 1$.
\end{axiom}
+
+
+Disstrubitiv Laws of the reals
\begin{axiom}\label{reals_axiom_disstro1}
For all $x,y,z \in \reals$ $x \rmul (y + z) = (x \rmul y) + (x \rmul z)$.
\end{axiom}
@@ -386,10 +401,9 @@ Such that we can introduce the integers and raitionals as smooth as possible.
For all $x,y,z \in \reals$ $(y + z) \rmul x = (y \rmul x) + (z \rmul x)$.
\end{axiom}
-\begin{axiom}\label{reals_reducion_on_addition}
- For all $x,y,z \in \reals$ if $x + y = x + z$ then $y = z$.
-\end{axiom}
+
+Definition of the order symbols
\begin{abbreviation}\label{rless}
$x < y$ iff $x \rless y$.
\end{abbreviation}
@@ -406,50 +420,50 @@ Such that we can introduce the integers and raitionals as smooth as possible.
$x \geq y$ iff it is wrong that $x < y$.
\end{abbreviation}
+
+
+Laws of the order on the reals
\begin{abbreviation}\label{is_positiv}
$x$ is positiv iff $x > \zero$.
\end{abbreviation}
-
-
-
-
-\begin{axiom}\label{tarski1}
+\begin{axiom}\label{reals_order}
For all $x,y \in \reals$ we have if $x < y$ then $\lnot y < x$.
\end{axiom}
-\begin{axiom}\label{tarski2}
+\begin{axiom}\label{reals_dense}
For all $x,y \in \reals$ if $x < y$ then
there exist $z \in \reals$ such that $x < z$ and $z < y$.
\end{axiom}
-\begin{axiom}\label{tarski3}
+\begin{axiom}\label{reals_is_eta_zero_set}
For all $X,Y,x,y$ such that $X,Y \subseteq \reals$ and $x \in X$ and $y \in Y$ and $x < y$ we have there exist $z \in \reals$
such that $x < z < y$.
\end{axiom}
-\begin{axiom}\label{tarski4}
- For all $x,y,z \in \reals$ $(x + y) + z = x + (y + z)$ and $(x \rmul y) \rmul z = x \rmul (y \rmul z)$.
+\begin{axiom}\label{reals_one_bigger_zero}
+ $\zero < 1$.
\end{axiom}
-\begin{axiom}\label{tarski5}
- For all $x,y \in \reals$ we have there exist $z \in \reals$ such that $x + z = y$.
+\begin{axiom}\label{reals_order_behavior_with_addition}
+ For all $x,y \in \reals$ such that $x < y$ we have for all $z \in \reals$ $x + z < y + z$.
\end{axiom}
-
-\begin{axiom}\label{tarski8}
- $\zero < 1$.
+\begin{axiom}\label{reals_postiv_mul_is_positiv}
+ For all $x,y \in \reals$ such that $\zero < x,y$ we have $\zero < (x \rmul y)$.
\end{axiom}
-\begin{axiom}\label{labelordersossss}
- For all $x,y \in \reals$ such that $x < y$ we have for all $z \in \reals$ $x + z < y + z$.
+\begin{axiom}\label{reals_postiv_mul_negativ_is_negativ}
+ For all $x,y \in \reals$ such that $x < \zero < y$ we have $(x \rmul y) < \zero$.
\end{axiom}
-\begin{axiom}\label{nocheinschoeneslabel}
- For all $x,y \in \reals$ such that $\zero < x,y$ we have $\zero < (x \rmul y)$.
+\begin{axiom}\label{reals_negativ_mul_is_negativ}
+ For all $x,y \in \reals$ such that $x,y < \zero$ we have $\zero < (x \rmul y)$.
\end{axiom}
+
+
\subsection{The Intergers}
@@ -480,10 +494,11 @@ Such that we can introduce the integers and raitionals as smooth as possible.
For all $r \in \reals$ we have $\neg{\neg{r}} = r$.
\end{proposition}
\begin{proof}
- Fix $r \in \reals$.
- $r + \neg{r} = \zero$.
- $\neg{r} + \neg{\neg{r}} = \zero$.
- Follows by \cref{reals_reducion_on_addition,neg,reals_axiom_kommu}.
+ Omitted.
+% Fix $r \in \reals$.
+% $r + \neg{r} = \zero$.
+% $\neg{r} + \neg{\neg{r}} = \zero$.
+% Follows by \cref{neg,reals_axiom_kommu}.
\end{proof}
\begin{definition}\label{integers}
@@ -511,22 +526,6 @@ Such that we can introduce the integers and raitionals as smooth as possible.
-\begin{proposition}\label{integers_negativ_times_negativ_is_positiv}
- Suppose $n,m \in \integers$.
- Suppose $n < \zero$ and $m < \zero$.
- Then $n \rmul m > \zero$.
-\end{proposition}
-\begin{proof}
- Omitted.
- %$n \neq \zero$ and $m \neq \zero$.
- %For all $k \in \naturals$ we have $k = \zero \lor k > \zero$.
- %There exists $n' \in \reals$ such that $n' + n = \zero$.
- %There exists $m' \in \reals$ such that $m' + m = \zero$.
-\end{proof}
-
-%TODO: negativ * negativ = positiv.
-
-
\subsection{The Rationals}
\begin{axiom}\label{invers_reals}
@@ -542,7 +541,7 @@ Such that we can introduce the integers and raitionals as smooth as possible.
\end{abbreviation}
\begin{definition}\label{rationals} %TODO: Vielleicht ist hier die definition das alle inversen von den ganzenzahlen und die ganzenzahlen selbst die rationalen zahlen erzeugen
- $\rationals = \{ q \in \reals \mid \exists z \in \integers. \exists n \in \naturalsPlus. q = \rfrac{z}{n} \}$.
+ $\rationals = \{ q \in \reals \mid \exists z \in \integers. \exists n \in (\integers \setminus \{\zero\}). q = \rfrac{z}{n} \}$.
\end{definition}
\begin{abbreviation}\label{nominator}
@@ -553,23 +552,41 @@ Such that we can introduce the integers and raitionals as smooth as possible.
$n$ is denominator of $q$ iff there exists $z \in \integers$ such that $q = \rfrac{z}{n}$.
\end{abbreviation}
-%\begin{proposition}\label{q_is_less_then_p_if_denominator_is_bigger_and_nominator_is_equal}
-% Suppose $p,q \in \rationals$.
-% Suppose $z \in \naturals$.
-% Suppose $p$ is positiv.
-% Suppose $q$ is positiv.
-% Suppose $z$ is nominator of $p$.
-% Suppose $z$ is nominator of $p$.
-% Suppose $p'$ is denominator of $p$.
-% Suppose $q'$ is denominator of $q$.
-% Then $p \leq q$ iff $p' \geq q'$.
-%\end{proposition}
+\begin{theorem}\label{one_divided_by_n_is_in_zero_to_one}
+ For all $n \in \naturalsPlus$ we have $\zero < \rfrac{1}{n} \leq 1$.
+\end{theorem}
+\begin{proof}
+ Omitted.
+\end{proof}
+\begin{lemma}\label{fraction_kuerzung} %TODO: Englischen namen rausfinden
+ For all $n,m,k \in \reals$ we have $\rfrac{n \rmul k}{m \rmul k} = \rfrac{n}{m}$.
+\end{lemma}
+\begin{proof}
+ Omitted.
+\end{proof}
-%\begin{theorem}\label{one_divided_by_n_is_in_zero_to_one}
-% For all $n \in \naturalsPlus$ we have $\zero < \rfrac{1}{n} \leq 1$.
-%\end{theorem}
+\begin{lemma}\label{fraction_swap}
+ For all $n,m,k,l \in \reals$ we have $\rfrac{\rfrac{n}{m}}{\rfrac{k}{l}}=\rfrac{n \rmul l}{m \rmul k}$.
+\end{lemma}
+\begin{proof}
+ Omitted.
+\end{proof}
+\begin{definition}\label{divisor}
+ $g$ is a integral divisor of $a$ iff $g \in \naturals$ and there exist $b \in \integers$ such that $g \rmul b = a$.
+\end{definition}
+
+
+
+
+%\begin{abbreviation}\label{gcd}
+% $g$ is greatest common divisor of $\{a,b\}$ iff
+% $g$ is a integral divisor of $a$
+% and $g$ is a integral divisor of $b$
+% and for all $g'$ such that $g'$ is a integral divisor of $a$
+% and $g'$ is a integral divisor of $b$ we have $g' \leq g$.
+%\end{abbreviation}
% TODO: Was man noch so beweisen könnte: bruch kürzung, kehrbruch eigenschaften, bruch in bruch vereinfachung,
@@ -652,7 +669,7 @@ Such that we can introduce the integers and raitionals as smooth as possible.
\begin{lemma}\label{order_reals_lemma3}
Let $x,y,z \in \reals$.
- Suppose $\zero < x$.
+ Suppose $\zero > x$.
Suppose $y < z$.
Then $(x \rmul z) < (x \rmul y)$.
\end{lemma}
diff --git a/library/topology/continuous.tex b/library/topology/continuous.tex
index 6a32353..a9bc58e 100644
--- a/library/topology/continuous.tex
+++ b/library/topology/continuous.tex
@@ -1,5 +1,7 @@
\import{topology/topological-space.tex}
\import{relation.tex}
+\import{function.tex}
+\import{set.tex}
\begin{definition}\label{continuous}
$f$ is continuous iff for all $U \in \opens[Y]$ we have $\preimg{f}{U} \in \opens[X]$.
@@ -8,18 +10,25 @@
\begin{proposition}\label{continuous_definition_by_closeds}
Let $X$ be a topological space.
Let $Y$ be a topological space.
+ Let $f \in \funs{X}{Y}$.
Then $f$ is continuous iff for all $U \in \closeds{Y}$ we have $\preimg{f}{U} \in \closeds{X}$.
\end{proposition}
\begin{proof}
Omitted.
- %We show that if $f$ is continuous then for all $U \in \closeds{Y}$ we have $\preimg{f}{U} \in \closeds{X}$.
+ %We show that if $f$ is continuous then for all $U \in \closeds{Y}$ such that $U \neq \emptyset$ we have $\preimg{f}{U} \in \closeds{X}$.
%\begin{subproof}
% Suppose $f$ is continuous.
% Fix $U \in \closeds{Y}$.
% $\carrier[Y] \setminus U$ is open in $Y$.
% Then $\preimg{f}{(\carrier[Y] \setminus U)}$ is open in $X$.
% Therefore $\carrier[X] \setminus \preimg{f}{(\carrier[Y] \setminus U)}$ is closed in $X$.
- % $\carrier[X] \setminus \preimg{f}{(\carrier[Y] \setminus U)} \subseteq \preimg{f}{U}$.
+ % We show that $\carrier[X] \setminus \preimg{f}{(\carrier[Y] \setminus U)} \subseteq \preimg{f}{U}$.
+ % \begin{subproof}
+ % It suffices to show that for all $x \in \carrier[X] \setminus \preimg{f}{(\carrier[Y] \setminus U)}$ we have $x \in \preimg{f}{U}$.
+ % Fix $x \in \carrier[X] \setminus \preimg{f}{(\carrier[Y] \setminus U)}$.
+ % Take $y \in \carrier[Y]$ such that $f(x)=y$.
+ % It suffices to show that $y \in U$.
+ % \end{subproof}
% $\preimg{f}{U} \subseteq \carrier[X] \setminus \preimg{f}{(\carrier[Y] \setminus U)}$.
%\end{subproof}
%We show that if for all $U \in \closeds{Y}$ we have $\preimg{f}{U} \in \closeds{X}$ then $f$ is continuous.
@@ -27,3 +36,4 @@
% Omitted.
%\end{subproof}
\end{proof}
+
diff --git a/library/topology/urysohn.tex b/library/topology/urysohn.tex
new file mode 100644
index 0000000..65457ea
--- /dev/null
+++ b/library/topology/urysohn.tex
@@ -0,0 +1,274 @@
+\import{topology/topological-space.tex}
+\import{topology/separation.tex}
+\import{topology/continuous.tex}
+\import{numbers.tex}
+\import{function.tex}
+\import{set.tex}
+\import{cardinal.tex}
+
+\section{Urysohns Lemma}
+% In this section we want to proof Urysohns lemma.
+% We try to follow the proof of Klaus Jänich in his book. TODO: Book reference
+% The Idea is to construct staircase functions as a chain.
+% The limit of our chain turns out to be our desired continuous function from a topological space $X$ to $[0,1]$.
+% With the property that \[f\mid_{A}=1 \land f\mid_{B}=0\] for \[A,B\] closed sets.
+
+%Chains of sets.
+
+The first tept will be a formalisation of chain constructions.
+
+\subsection{Chains of sets}
+% Assume $A,B$ are subsets of a topological space $X$.
+
+% As Jänich propose we want a special property on chains of subsets.
+% We need a rising chain of subsets $\mathfrak{A} = (A_{0}, ... ,A_{r})$ of $A$, i.e.
+% \begin{align}
+% A = A_{0} \subset A_{1} \subset ... \subset A_{r} \subset X\setminus B
+% \end{align}
+% such that for all elements in this chain following holds,
+% $\overline{A_{i-1}} \subset \interior{A_{i}}$.
+% In this case we call the chain legal.
+
+\begin{definition}\label{one_to_n_set}
+ $\seq{m}{n} = \{x \in \naturals \mid m \leq x \leq n\}$.
+\end{definition}
+
+\begin{definition}\label{cardinality}
+ $X$ has cardinality of $n$ iff
+ $n \in \naturals$ and there exists $b$ such that $b$ is a bijection from $\seq{1}{n}$ to $X$.
+\end{definition}
+
+
+
+\begin{struct}\label{sequence}
+ A sequence $X$ is a onesorted structure equipped with
+ \begin{enumerate}
+ \item $\index$
+ \item $\indexset$
+ \end{enumerate}
+ such that
+ \begin{enumerate}
+ \item\label{indexset_is_subset_naturals} $\indexset[X] \subseteq \naturals$.
+ \item\label{index_is_bijection} $\index[X]$ is a bijection from $\indexset[X]$ to $\carrier[X]$.
+ \end{enumerate}
+\end{struct}
+
+\begin{definition}\label{cahin_of_subsets}
+ $C$ is a chain of subsets iff
+ $C$ is a sequence and for all $n,m \in \indexset[C]$ such that $n < m$ we have $\index[C](n) \subseteq \index[C](m)$.
+\end{definition}
+
+\begin{definition}\label{chain_of_n_subsets}
+ $C$ is a chain of $n$ subsets iff
+ $C$ is a chain of subsets and $n \in \indexset[C]$
+ and for all $m \in \naturals$ such that $m \leq n$ we have $m \in \indexset[C]$.
+\end{definition}
+
+
+
+% TODO: The Notion above should be generalised to sequences since we need them as well for our limit
+% and also for the subproof of continuity of the limit.
+
+
+% \begin{definition}\label{legal_chain}
+% $C$ is a legal chain of subsets of $X$ iff
+% $C \subseteq \pow{X}$. %and
+% %there exist $f \in \funs{C}{\naturals}$ such that
+% %for all $x,y \in C$ we have if $f(x) < f(y)$ then $x \subset y \land \closure{x} \subset \interior{y}$.
+% \end{definition}
+
+% TODO: We need a notion for declarinf new properties to existing thing.
+%
+% The following gives a example and a wish want would be nice to have:
+% "A (structure) is called (adjectiv of property), if"
+%
+% This should then be use als follows:
+% Let $X$ be a (adjectiv_1) ... (adjectiv_n) (structure_word).
+% Which should be translated to fol like this:
+% ?[X]: is_structure(X) & is_adjectiv_1(X) & ... & is_adjectiv_n(X)
+% ---------------------------------------------------------------
+
+
+
+\subsection{staircase function}
+
+\begin{definition}\label{intervalclosed}
+ $\intervalclosed{a}{b} = \{x \in \reals \mid a \leq x \leq b\}$.
+\end{definition}
+
+
+\begin{struct}\label{staircase_function}
+ A staircase function $f$ is a onesorted structure equipped with
+ \begin{enumerate}
+ \item $\chain$
+ \end{enumerate}
+ such that
+ \begin{enumerate}
+ \item \label{staircase_is_function} $f$ is a function to $\intervalclosed{\zero}{1}$.
+ \item \label{staircase_domain} $\dom{f}$ is a topological space.
+ \item \label{staricase_def_chain} $C$ is a chain of subsets.
+ \item \label{staircase_chain_is_in_domain} for all $x \in C$ we have $x \subseteq \dom{f}$.
+ \item \label{staircase_behavoir_index_zero} $f(\index[C](1))= 1$.
+ \item \label{staircase_behavoir_index_n} $f(\dom{f}\setminus \unions{C}) = \zero$.
+ \end{enumerate}
+\end{struct}
+
+\begin{definition}\label{legal_staircase}
+ $f$ is a legal staircase function iff
+ $f$ is a staircase function and
+ for all $n,m \in \indexset[\chain[f]]$ such that $n \leq m$ we have $f(\index[\chain[f]](n)) \leq f(\index[\chain[f]](m))$.
+\end{definition}
+
+\begin{abbreviation}\label{urysohnspace}
+ $X$ is a urysohn space iff
+ $X$ is a topological space and
+ for all $A,B \in \closeds{X}$ such that $A \inter B = \emptyset$
+ we have there exist $A',B' \in \opens[X]$
+ such that $A \subseteq A'$ and $B \subseteq B'$ and $A' \inter B' = \emptyset$.
+\end{abbreviation}
+
+\begin{definition}\label{urysohnchain}
+ $C$ is a urysohnchain in $X$ of cardinality $k$ iff %<---- TODO: cardinality unused!
+ $C$ is a chain of subsets and
+ for all $A \in C$ we have $A \subseteq X$ and
+ for all $n,m \in \indexset[C]$ such that $n < m$ we have $\closure{\index[C](n)}{X} \subseteq \interior{\index[C](m)}{X}$.
+\end{definition}
+
+\begin{abbreviation}\label{infinte_sequence}
+ $S$ is a infinite sequence iff $S$ is a sequence and $\indexset[S]$ is infinite.
+\end{abbreviation}
+
+\begin{definition}\label{infinite_product}
+ $X$ is the infinite product of $Y$ iff
+ $X$ is a infinite sequence and for all $i \in \indexset[X]$ we have $\index[X](i) = Y$.
+\end{definition}
+
+\begin{definition}\label{refinmant}
+ $C$ is a refinmant of $C'$ iff for all $x \in C'$ we have $x \in C$ and
+ for all $y \in C'$ such that $y \subset x$ we have there exist $c \in C$ such that $y \subset c \subset x$
+ and for all $g \in C$ such that $g \neq c$ we have not $y \subset g \subset x$.
+\end{definition}
+
+
+% The next thing we need to define is the uniform staircase function.
+% This function has it's domain in $X$ and maps to the closed interval $[0,1]$.
+% These functions should behave als follows,
+% \begin{align}
+% &f(A_{0}) = 1 &\text{consant} \\
+% &f(A_{k} \setminus A_{k+1}) = 1-\frac{k}{r} &\text{constant.}
+% \end{align}
+
+% We then prove that for any given $r$ we find a repolished chain,
+% which contains the $A_{i}$ and this replished chain is also legal.
+%
+% The proof will be finished by taking the limit on $f_{n}$ with $f_{n}$
+% be a staircase function with $n$ many refinemants.
+% This limit will be continuous and we would be done.
+
+
+% TODO: Since we want to prove that $f$ is continus, we have to formalize that
+% \reals with the usual topology is a topological space.
+% -------------------------------------------------------------
+
+\begin{theorem}\label{urysohn}
+ Let $X$ be a urysohn space.
+ Suppose $A,B \subseteq \closeds{X}$.
+ Suppose $A \inter B$ is empty.
+ There exist $f$ such that $f \in \funs{X}{\intervalclosed{\zero}{1}}$
+ and $f(A) = 1$ and $f(B)= 0$ and $f$ is continuous.
+\end{theorem}
+\begin{proof}
+ We show that for all $n \in \naturals$ we have
+ if there exist $C$ such that $C$ is a urysohnchain in $X$ of cardinality $n$
+ then there exist $C'$ such that $C'$ is a urysohnchain in $X$ of cardinality $n+1$
+ and $C'$ is a refinmant of $C$.
+ \begin{subproof}
+ Omitted.
+ \end{subproof}
+
+
+
+ Take $P$ such that $P$ is a infinite sequence and $\indexset[P] = \naturals$ and for all $i \in \indexset[P]$ we have $\index[P](i) = \pow{X}$.
+
+ We show that there exist $\zeta$ such that $\zeta$ is a infinite sequence
+ and for all $i \in \indexset[\zeta]$ we have
+ $\index[\zeta](i)$ is a urysohnchain in $X$ of cardinality $i$
+ and $A \subseteq \index[\zeta](i)$
+ and $\index[\zeta](i) \subseteq (X \setminus B)$
+ and for all $j \in \indexset[\zeta]$ such that
+ $j < i$ we have for all $x \in \index[\zeta](j)$ we have $x \in \index[\zeta](i)$.
+ \begin{subproof}
+ Omitted.
+ \end{subproof}
+
+
+
+
+
+
+
+
+ We show that there exist $g \in \funs{X}{\intervalclosed{\zero}{1}}$ such that $g(A)=1$ and $g(X\setminus A) = \zero$.
+ \begin{subproof}
+ Omitted.
+ \end{subproof}
+ $g$ is a staircase function and $\chain[g] = C$.
+ $g$ is a legal staircase function.
+
+
+ We show that there exist $f$ such that $f \in \funs{X}{\intervalclosed{\zero}{1}}$
+ and $f(A) = 1$ and $f(B)= 0$ and $f$ is continuous.
+ \begin{subproof}
+ Omitted.
+ \end{subproof}
+
+
+ %We show that for all $n \in \nautrals$ we have $C_{n}$ a legal chain of subsets of $X$.
+ %\begin{subproof}
+ % Omitted.
+ %\end{subproof}
+
+ %Proof Sheme Idea:
+ % -We proof for n=1 that C_{n} is a chain and legal
+ % -Then by induction with P(n+1) is refinmant of P(n)
+ % -Therefore we have a increing refinmant of these Chains such that our limit could even apply
+ % ---------------------------------------------------------
+
+ %We show that there exist $f \in \funs{\naturals}{\funs{X}{\intervalclosed{0}{1}}}$ such that $f(n)$ is a staircase function. %TODO: Define Staircase function
+ %\begin{subproof}
+ % Omitted.
+ %\end{subproof}
+
+
+ % Formalization idea of enumarted sequences:
+ % - Define a enumarted sequnecs as a set A with a bijection between A and E \in \pow{\naturals}
+ % - This should give all finite and infinte enumarable sequences
+ % - Introduce a notion for the indexing of these enumarable sequences.
+ % - Then we can define the limit of a enumarted sequence of functions.
+ % ---------------------------------------------------------
+ %
+ % Here we need a limit definition for sequences of functions
+ %We show that there exist $F \in \funs{X}{\intervalclosed{0}{1}}$ such that $F = \limit{set of the staircase functions}$
+ %\begin{subproof}
+ % Omitted.
+ %\end{subproof}
+ %
+ %We show that $F(A) = 1$.
+ %\begin{subproof}
+ % Omitted.
+ %\end{subproof}
+ %
+ %We show that $F(B) = 0$.
+ %\begin{subproof}
+ % Omitted.
+ %\end{subproof}
+ %
+ %We show that $F$ is continuous.
+ %\begin{subproof}
+ % Omitted.
+ %\end{subproof}
+\end{proof}
+
+%\begin{theorem}\label{safe}
+% Contradiction.
+%\end{theorem}