summaryrefslogtreecommitdiff
path: root/library
diff options
context:
space:
mode:
Diffstat (limited to 'library')
-rw-r--r--library/numbers.tex191
1 files changed, 135 insertions, 56 deletions
diff --git a/library/numbers.tex b/library/numbers.tex
index f13214d..4b5d10b 100644
--- a/library/numbers.tex
+++ b/library/numbers.tex
@@ -2,6 +2,7 @@
\import{relation.tex}
\import{set/suc.tex}
+
\section{The real numbers}
\begin{signature}
@@ -16,12 +17,47 @@
$x \rmul y$ is a set.
\end{signature}
+\begin{axiom}\label{reals_axiom_order}
+ $\lt[\reals]$ is an order on $\reals$.
+\end{axiom}
+
+\begin{abbreviation}\label{lesseq_on_reals}
+ $x \leq y$ iff $(x,y) \in \lt[\reals]$.
+\end{abbreviation}
+
+\begin{abbreviation}\label{less_on_reals}
+ $x < y$ iff it is wrong that $y \leq x$.
+\end{abbreviation}
+
+\begin{abbreviation}\label{greater_on_reals}
+ $x > y$ iff $y \leq x$.
+\end{abbreviation}
+
+\begin{abbreviation}\label{greatereq_on_reals}
+ $x \geq y$ iff it is wrong that $x < y$.
+\end{abbreviation}
+
+\begin{abbreviation}\label{is_positiv}
+ $x$ is positiv iff $x > \zero$.
+\end{abbreviation}
+
+
%Structure TODO:
% Take as may axioms as needed - Tarski Axioms of reals
%Implement Naturals -> Integer -> rationals -> reals
-\subsection{Basic axioms of the reals}
+\subsection{Creation of natural numbers}
+
+\subsubsection{Defenition and axioms}
+
+\begin{abbreviation}\label{inductive_set}
+ $A$ is an inductive set iff $\emptyset\in A$ and for all $a\in A$ we have $\suc{a}\in A$.
+\end{abbreviation}
+
+\begin{abbreviation}\label{zero_is_emptyset}
+ $\zero = \emptyset$.
+\end{abbreviation}
\begin{axiom}\label{reals_axiom_zero_in_reals}
$\zero \in \reals$.
@@ -35,49 +71,101 @@
$\zero \neq 1$.
\end{axiom}
-\begin{inductive}\label{naturals_subset_reals}
- Define $\naturals \subseteq \reals$ inductively as follows.
- \begin{enumerate}
- \item $\zero \in \naturals$.
- \item If $n\in \naturals$, then $\successor{n} \in \naturals$.
- \end{enumerate}
-\end{inductive}
-
-%\begin{axiom}\label{negativ_is_set}
-% $\negativ{x}$ is a set.
-%\end{axiom}
-
-%\begin{axiom}\label{negativ_of}
-% $\negativ{x} \in \reals$ iff $x\in \reals$.
-%\end{axiom}
-%
-%\begin{axiom}\label{negativ_behavior}
-% $x + \negativ{x} = \zero$.
-%\end{axiom}
-
-\begin{definition}\label{reals_definition_order_def}
- $x < y$ iff there exist $z \in \reals$ such that $x + (z \rmul z) = y$.
+\begin{axiom}\label{one_is_suc_zero}
+ $\suc{\zero} = 1$.
+\end{axiom}
+
+\begin{definition}\label{naturals}
+ $\naturals = \{ x \in \reals \mid \exists y \in \reals. \suc{y} = x \lor x = \zero \}$.
\end{definition}
-%\begin{axiom}\label{reals_axiom_order}
-% $\lt[\reals]$ is an order on $\reals$.
-%\end{axiom}
+\begin{lemma}\label{naturals_subseteq_reals}
+ $\naturals \subseteq \reals$.
+\end{lemma}
-%\begin{abbreviation}\label{lesseq_on_reals}
-% $x \leq y$ iff $(x,y) \in \lt[\reals]$.
-%\end{abbreviation}
+%\begin{inductive}\label{naturals_subset_reals}
+% Define $\naturals \subseteq \reals$ inductively as follows.
+% \begin{enumerate}
+% \item $\zero \in \naturals$.
+% \item If $n\in \naturals$, then $\suc{n} \in \naturals$. %Naproche translate this to for all n \in R \suc{n} \in R we want something like the definition before.
+% \end{enumerate}
+%\end{inductive}
-\begin{abbreviation}\label{less_on_reals}
- $x \leq y$ iff it is wrong that $y < x$.
-\end{abbreviation}
+\begin{axiom}\label{suc_eq_plus_one}
+ For all $n \in \naturals$ we have $\suc{n} = n + 1$.
+\end{axiom}
-\begin{abbreviation}\label{greater_on_reals}
- $x > y$ iff $y \leq x$.
+\begin{abbreviation}\label{is_a_natural_number}
+ $n$ is a natural number iff $n \in \naturals$.
\end{abbreviation}
-\begin{abbreviation}\label{greatereq_on_reals}
- $x \geq y$ iff it is wrong that $x < y$.
-\end{abbreviation}
+\begin{axiom}\label{naturals_addition_axiom_1}
+ For all $n \in \naturals$ $n + \zero = \zero + n = n$.
+\end{axiom}
+
+\begin{axiom}\label{naturals_addition_axiom_2}
+ For all $n, m \in \naturals$ $n + \suc{m} = \suc{n} + m = \suc{n+m}$.
+\end{axiom}
+
+\begin{axiom}\label{naturals_mul_axiom_1}
+ For all $n \in \naturals$ we have $n \rmul \zero = \zero$.
+\end{axiom}
+
+\begin{axiom}\label{naturals_mul_axiom_2}
+ For all $n,m \in \naturals$ we have $\suc{n} \rmul m = (n \rmul m) + m$.
+\end{axiom}
+
+\begin{axiom}\label{addition_on_naturals}
+ If $x$ is a natural number and $y$ is a natural number then $x+y$ is a natural number.
+\end{axiom}
+
+
+\subsubsection{Properties and Facts natural numbers}
+
+\begin{proposition}\label{naturals_kommu}
+ For all $n,m \in \naturals$ we have $n + m = m + n$.
+\end{proposition}
+\begin{proof}
+ \begin{byCase}
+ \caseOf{$n = \emptyset$.} Trivial.
+ \caseOf{$m = \emptyset$.} Trivial.
+ \caseOf{$n \neq \emptyset \land m \neq \emptyset$.} Omitted.
+ \end{byCase}
+\end{proof}
+
+
+
+\begin{lemma}\label{naturals_inductive_set}
+ $\naturals$ is an inductive set.
+\end{lemma}
+
+
+\begin{lemma}\label{naturals_smallest_inductive_set}
+ Let $A$ be an inductive set.
+ Then $\naturals\subseteq A$.
+\end{lemma}
+
+
+\begin{lemma}\label{naturals_is_equal_to_two_times_naturals}
+ $\{x+y \mid x \in \naturals, y \in \naturals \} = \naturals$.
+\end{lemma}
+\begin{proof}
+ Omitted.
+\end{proof}
+
+%\begin{lemma}\label{oeder_on_naturals}
+% $\lt[\reals] \inter (\naturals \times \naturals)$ is an order on $\naturals$.
+%\end{lemma}
+
+
+
+
+
+
+\subsection{The Intergers}
+
+
+
\begin{axiom}\label{reals_axiom_dense}
For all $x,y \in \reals$ if $x < y$ then
@@ -127,7 +215,9 @@
\begin{proposition}\label{reals_reducion_on_addition}
For all $x,y,z \in \reals$ if $x + y = x + z$ then $y = z$.
\end{proposition}
-
+\begin{proof}
+ Omitted.
+\end{proof}
%\begin{signature}\label{invers_is_set}
@@ -147,9 +237,7 @@
% $x \rminus \addInv{x} = \zero$.
%\end{lemma}
-\begin{abbreviation}\label{is_positiv}
- $x$ is positiv iff $x > \zero$.
-\end{abbreviation}
+
\begin{lemma}\label{reals_add_of_positiv}
Let $x,y \in \reals$.
@@ -221,7 +309,9 @@
\begin{lemma}\label{order_reals_lemma00}
For all $x,y \in \reals$ such that $x > y$ we have $x \geq y$.
\end{lemma}
-
+\begin{proof}
+ Omitted.
+\end{proof}
\begin{lemma}\label{order_reals_lemma5}
For all $x,y \in \reals$ such that $x < y$ we have $x \leq y$.
@@ -289,24 +379,13 @@
-\section{The natural numbers}
-\begin{abbreviation}\label{def_suc}
- $\successor{n} = n + 1$.
-\end{abbreviation}
-\begin{inductive}\label{naturals_definition_as_subset_of_reals}
- Define $\nat \subseteq \reals$ inductively as follows.
- \begin{enumerate}
- \item $\zero \in \nat$.
- \item If $n\in \nat$, then $\successor{n} \in \nat$.
- \end{enumerate}
-\end{inductive}
-\begin{lemma}\label{reals_order_suc}
- $n < \successor{n}$.
-\end{lemma}
+
+
+
%\begin{proposition}\label{safe}
% Contradiction.