diff options
Diffstat (limited to 'library')
| -rw-r--r-- | library/ordinal.tex | 9 | ||||
| -rw-r--r-- | library/set.tex | 26 | ||||
| -rw-r--r-- | library/set/regularity.tex | 4 |
3 files changed, 10 insertions, 29 deletions
diff --git a/library/ordinal.tex b/library/ordinal.tex index c092fa8..f978257 100644 --- a/library/ordinal.tex +++ b/library/ordinal.tex @@ -235,13 +235,6 @@ To show that \in\ is a strict total order it only remains to show that \in\ is c % Goal: ordinal(fgamma)=>(elem(falpha,fgamma)|elem(fgamma,falpha)|falpha=fgamma)) % Assume $\gamma$ is an ordinal. - % Goal: - % elem(falpha,fgamma)|elem(fgamma,falpha)|falpha=fgamma - % - % Original Vampire proof: - % Follows by \cref{setext,transitiveset,ordinal,in_implies_neq,prec_is_ordinal,in_asymmetric}. - % - % Pruned proof: Follows by \cref{setext,transitiveset,ordinal}. \end{subproof} \end{proof} @@ -489,7 +482,7 @@ Then $\alpha\subseteq\beta$. \end{proposition} \begin{proof} % Vampire proof: - Follows by \cref{inters_of_ordinals_is_ordinal,in_implies_neq,inters_iff_forall,ordinal_subseteq_implies_elem_or_eq,inters_subseteq_elem}. + Follows by \cref{inters_of_ordinals_is_ordinal,in_irrefl,inters_iff_forall,ordinal_subseteq_implies_elem_or_eq,inters_subseteq_elem}. \end{proof} \begin{proposition}\label{inters_of_ordinals_is_minimal} diff --git a/library/set.tex b/library/set.tex index 1f7a76a..d964ce7 100644 --- a/library/set.tex +++ b/library/set.tex @@ -124,16 +124,6 @@ which applies it to goals of the form “$A = B$” and “$A \neq B$”. Suppose $A\neq\emptyset$. Then $A$ is inhabited. \end{proposition} -%\begin{proposition}\label{empty_iff_emptyset} -% $A$ is empty iff $A = \emptyset$. -%\end{proposition} - - -\begin{proposition}% -\label{empty_eq} - If $x$ and $y$ are empty, then $x = y$. -\end{proposition} - \begin{proposition}\label{emptyset_subseteq} For all $a$ we have $\emptyset \subseteq a$. \end{proposition} @@ -351,17 +341,19 @@ The $\operatorname{\textsf{cons}}$ operation is determined by the following axio If $c\in B$, then $c\in A\union B$. \end{proposition} -% TODO SLOW \begin{proposition}\label{union_as_unions} $\unions{\{x,y\}} = x\union y$. \end{proposition} \begin{proof} - %For all z we have - %\begin{align*} - % z\in \unions{\{x,y\}} - % &\iff \exists Z\in\{x,y\}. z\in Z - %\end{align*} - Follows by set extensionality. + For all $z$ we have + \begin{align*} + z\in \unions{\{x,y\}} + &\iff \exists Z\in\{x,y\}. z\in Z + &\iff z\in x \lor z\in y + &\iff z\in x\union y. + \end{align*} + Follows by \cref{setext}. + %Follows by set extensionality. \end{proof} \begin{proposition}[Commutativity of union]% diff --git a/library/set/regularity.tex b/library/set/regularity.tex index 068d6a8..10f4a1f 100644 --- a/library/set/regularity.tex +++ b/library/set/regularity.tex @@ -59,10 +59,6 @@ Straightforward. \end{proof} -\begin{proposition}\label{in_implies_neq} - If $a\in A$, then $a\neq A$. -\end{proposition} - \begin{proposition}\label{in_asymmetric} For all sets $a, b$ such that $a\in b$ we have $b\notin a$. \end{proposition} |
