summaryrefslogtreecommitdiff
path: root/library
diff options
context:
space:
mode:
Diffstat (limited to 'library')
-rw-r--r--library/numbers.tex19
-rw-r--r--library/topology/metric-space.tex2
-rw-r--r--library/topology/real-topological-space.tex73
-rw-r--r--library/topology/urysohn2.tex73
4 files changed, 149 insertions, 18 deletions
diff --git a/library/numbers.tex b/library/numbers.tex
index cb3d5cf..b7de307 100644
--- a/library/numbers.tex
+++ b/library/numbers.tex
@@ -245,12 +245,31 @@
Then $(n + m) + (k + l)= n + m + k + l = n + (m + k) + l = (((n + m) + k) + l)$.
\end{proposition}
+%\begin{proposition}\label{natural_disstro_oneline}
+% Suppose $n,m,k \in \naturals$.
+% Then $n \rmul (m + k) = (n \rmul m) + (n \rmul k)$.
+%\end{proposition}
+%\begin{proof}
+% Let $P = \{n \in \naturals \mid \forall m,k \in \naturals . n \rmul (m + k) = (n \rmul m) + (n \rmul k)\}$.
+% $\zero \in P$.
+% $P \subseteq \naturals$.
+% It suffices to show that for all $n \in P$ we have $\suc{n} \in P$.
+% Fix $n \in P$.
+% It suffices to show that for all $m'$ such that $m' \in \naturals$ we have for all $k' \in \naturals$ we have $\suc{n} \rmul (m' + k') = (\suc{n} \rmul m') + (\suc{n} \rmul k')$.
+% Fix $m' \in \naturals$.
+% Fix $k' \in \naturals$.
+% $n \in \naturals$.
+% $ \suc{n} \rmul (m' + k') = (n \rmul (m' + k')) + (m' + k') = ((n \rmul m') + (n \rmul k')) + (m' + k') = ((n \rmul m') + (n \rmul k')) + m' + k' = (((n \rmul m') + (n \rmul k')) + m') + k' = (m' + ((n \rmul m') + (n \rmul k'))) + k' = ((m' + (n \rmul m')) + (n \rmul k')) + k' = (((n \rmul m') + m') + (n \rmul k')) + k' = ((n \rmul m') + m') + ((n \rmul k') + k') = (\suc{n} \rmul m') + (\suc{n} \rmul k')$.
+%\end{proof}
+
\begin{proposition}\label{natural_disstro}
Suppose $n,m,k \in \naturals$.
Then $n \rmul (m + k) = (n \rmul m) + (n \rmul k)$.
\end{proposition}
\begin{proof}
+ %Let $P = \{n \in \naturals \mid \forall m,k \in \naturals . n \rmul (m + k) = (n \rmul m) + (n \rmul k)\}$.
Let $P = \{n \in \naturals \mid \text{for all $m,k \in \naturals$ we have $n \rmul (m + k) = (n \rmul m) + (n \rmul k)$}\}$.
+
$\zero \in P$.
$P \subseteq \naturals$.
It suffices to show that for all $n \in P$ we have $\suc{n} \in P$.
diff --git a/library/topology/metric-space.tex b/library/topology/metric-space.tex
index bcc5b8c..0ed7bab 100644
--- a/library/topology/metric-space.tex
+++ b/library/topology/metric-space.tex
@@ -7,7 +7,7 @@
\section{Metric Spaces}
\begin{definition}\label{metric}
- $f$ is a metric on $M$ iff $f$ is a function from $M \times M$ to $\reals$ and
+ $f$ is a metric on $M$ iff $f$ is a function from $M \times M$ to $\reaaals$ and
for all $x,y,z \in M$ we have
$f(x,x) = \zero$ and
$f(x,y) = f(y,x)$ and
diff --git a/library/topology/real-topological-space.tex b/library/topology/real-topological-space.tex
index 239965c..db46732 100644
--- a/library/topology/real-topological-space.tex
+++ b/library/topology/real-topological-space.tex
@@ -17,10 +17,73 @@
$\topoBasisReals = \{ \epsBall{x}{\epsilon} \mid x \in \reals, \epsilon \in \realsplus\}$.
\end{definition}
-\begin{theorem}\label{reals_as_topo_space}
- Suppose $\opens[\reals] = \genOpens{\topoBasisReals}{\reals}$.
- Then $\reals$ is a topological space.
+\begin{axiom}\label{reals_carrier_reals}
+ $\carrier[\reals] = \reals$.
+\end{axiom}
+
+\begin{theorem}\label{topological_basis_reals_is_prebasis}
+ $\topoBasisReals$ is a topological prebasis for $\reals$.
\end{theorem}
\begin{proof}
- Omitted.
-\end{proof} \ No newline at end of file
+ We show that $\unions{\topoBasisReals} \subseteq \reals$.
+ \begin{subproof}
+ It suffices to show that for all $x \in \unions{\topoBasisReals}$ we have $x \in \reals$.
+ Fix $x \in \unions{\topoBasisReals}$.
+ \end{subproof}
+ We show that $\reals \subseteq \unions{\topoBasisReals}$.
+ \begin{subproof}
+ It suffices to show that for all $x \in \reals$ we have $x \in \unions{\topoBasisReals}$.
+ Fix $x \in \reals$.
+ \end{subproof}
+\end{proof}
+
+\begin{theorem}\label{topological_basis_reals_is_basis}
+ $\topoBasisReals$ is a topological basis for $\reals$.
+\end{theorem}
+\begin{proof}
+ $\topoBasisReals$ is a topological prebasis for $\reals$ by \cref{topological_basis_reals_is_prebasis}.
+ Let $B = \topoBasisReals$.
+ It suffices to show that for all $U \in B$ we have for all $V \in B$ we have for all $x$ such that $x \in U, V$ there exists $W\in B$ such that $x\in W\subseteq U, V$.
+ Fix $U \in B$.
+ Fix $V \in B$.
+ Fix $x \in U, V$.
+\end{proof}
+
+\begin{axiom}\label{topological_space_reals}
+ $\opens[\reals] = \genOpens{\topoBasisReals}{\reals}$.
+\end{axiom}
+
+\begin{theorem}\label{reals_is_topological_space}
+ $\reals$ is a topological space.
+\end{theorem}
+\begin{proof}
+ $\topoBasisReals$ is a topological basis for $\reals$.
+ Let $B = \topoBasisReals$.
+ We show that $\opens[\reals]$ is a family of subsets of $\carrier[\reals]$.
+ \begin{subproof}
+ It suffices to show that for all $A \in \opens[\reals]$ we have $A \subseteq \reals$.
+ Fix $A \in \opens[\reals]$.
+ Follows by \cref{powerset_elim,topological_space_reals,genopens}.
+ \end{subproof}
+ We show that $\reals \in\opens[\reals]$.
+ \begin{subproof}
+ $B$ covers $\reals$ by \cref{topological_prebasis_iff_covering_family,topological_basis}.
+ $\unions{B} \in \genOpens{B}{\reals}$.
+ $\reals \subseteq \unions{B}$.
+ \end{subproof}
+ We show that for all $A, B\in \opens[\reals]$ we have $A\inter B\in\opens[\reals]$.
+ \begin{subproof}
+ Follows by \cref{topological_space_reals,inters_in_genopens}.
+ \end{subproof}
+ We show that for all $F\subseteq \opens[\reals]$ we have $\unions{F}\in\opens[\reals]$.
+ \begin{subproof}
+ Follows by \cref{topological_space_reals,union_in_genopens}.
+ \end{subproof}
+ $\carrier[\reals] = \reals$.
+ Follows by \cref{topological_space}.
+\end{proof}
+
+\begin{proposition}\label{open_interval_is_open}
+ Suppose $a,b \in \reals$.
+ Then $\intervalopen{a}{b} \in \opens[\reals]$.
+\end{proposition} \ No newline at end of file
diff --git a/library/topology/urysohn2.tex b/library/topology/urysohn2.tex
index 396255e..838b121 100644
--- a/library/topology/urysohn2.tex
+++ b/library/topology/urysohn2.tex
@@ -152,16 +152,23 @@
\begin{proposition}\label{no_natural_between_n_and_suc_n}
For all $n,m \in \naturals$ we have not $n < m < \suc{n}$.
\end{proposition}
+\begin{proof}
+ Omitted.
+\end{proof}
+
+\begin{proposition}\label{naturals_is_zero_one_or_greater}
+ $\naturals = \{n \in \naturals \mid n > 1 \lor n = 1 \lor n = \zero\}$.
+\end{proposition}
+\begin{proof}
+ Omitted.
+\end{proof}
\begin{proposition}\label{naturals_rless_existence_of_lesser_natural}
For all $n \in \naturals$ we have for all $m \in \naturals$ such that $m < n$ there exist $k \in \naturals$ such that $m + k = n$.
\end{proposition}
\begin{proof}[Proof by \in-induction on $n$]
Assume $n \in \naturals$.
- We show that $\naturals = (\{\zero, 1\} \union \{n \in \naturals \mid n > 1\})$.
- \begin{subproof}
- Trivial.
- \end{subproof}
+
\begin{byCase}
\caseOf{$n = \zero$.}
@@ -196,9 +203,17 @@
We show that for all $m \in \naturals$ such that$m < n$ we have $m \in n$.
\begin{subproof}[Proof by \in-induction on $m$]
Assume $m \in \naturals$.
- %\begin{byCase}
- %
- %\end{byCase}
+ \begin{byCase}
+ \caseOf{$\suc{m}=n$.}
+ \caseOf{$\suc{m}\neq n$.}
+ \begin{byCase}
+ \caseOf{$n = \zero$.}
+ \caseOf{$n \neq \zero$.}
+ Take $l \in \naturals$ such that $\suc{l} = n$.
+ Omitted.
+
+ \end{byCase}
+ \end{byCase}
\end{subproof}
\end{subproof}
@@ -323,17 +338,51 @@
For all $n \in \naturals$ we have $\seq{\zero}{n}$ has cardinality $\suc{n}$.
\end{proposition}
+\begin{proposition}\label{bijection_naturals_order}
+ For all $M \subseteq \naturals$ such that $M$ is inhabited we have there exist $f,k$ such that $f$ is a bijection from $\seq{\zero}{k}$ to $M$ and $M$ has cardinality $\suc{k}$ and for all $n,m \in \seq{\zero}{k}$ such that $n < m$ we have $f(n) < f(m)$.
+\end{proposition}
+\begin{proof}
+ Omitted.
+\end{proof}
+
\begin{proposition}\label{existence_normal_ordered_urysohn}
Let $X$ be a urysohn space.
Suppose $U$ is a urysohnchain of $X$.
Suppose $\dom{U}$ is finite.
- Then there exist $V,f$ such that $V$ is a urysohnchain of $X$ and $f$ is consistent on $X$ to $Y$ and $V$ is normal ordered.
+ Suppose $U$ is inhabited.
+ Then there exist $V,f$ such that $V$ is a urysohnchain of $X$ and $f$ is consistent on $U$ to $V$ and $V$ is normal ordered.
\end{proposition}
\begin{proof}
- Take $k$ such that $\dom{U}$ has cardinality $k$ by \cref{ran_converse,cardinality,finite}.
- There exist $F$ such that $F$ is a bijection from $\seq{\zero}{k}$ to $\dom{U}$.
-
-
+ Take $n$ such that $\dom{U}$ has cardinality $n$ by \cref{ran_converse,cardinality,finite}.
+ \begin{byCase}
+ \caseOf{$n = \zero$.}
+ Omitted.
+ \caseOf{$n \neq \zero$.}
+ Take $k$ such that $k \in \naturals$ and $\suc{k}=n$.
+ We have $\dom{U} \subseteq \naturals$.
+ $\dom{U}$ is inhabited.
+ We show that there exist $F$ such that $F$ is a bijection from $\seq{\zero}{k}$ to $\dom{U}$ and for all $n',m' \in \seq{\zero}{k}$ such that $n' < m'$ we have $F(n') < F(m')$.
+ \begin{subproof}
+ Omitted.
+ \end{subproof}
+ Let $N = \seq{\zero}{k}$.
+ Let $M = \pow{X}$.
+ Define $V : N \to M$ such that $V(n)=$
+ \begin{cases}
+ &\at{U}{F(n)} & \text{if} n \in N
+ \end{cases}
+ $\dom{V} = \seq{\zero}{k}$.
+ We show that $V$ is a urysohnchain of $X$.
+ \begin{subproof}
+ Trivial.
+ \end{subproof}
+ We show that $F$ is consistent on $U$ to $V$.
+ \begin{subproof}
+ Trivial.
+ \end{subproof}
+ $V$ is normal ordered.
+ \end{byCase}
+
\end{proof}