diff options
Diffstat (limited to 'library')
| -rw-r--r-- | library/set/equinumerosity.tex | 2 | ||||
| -rw-r--r-- | library/topology/urysohn2.tex | 260 |
2 files changed, 243 insertions, 19 deletions
diff --git a/library/set/equinumerosity.tex b/library/set/equinumerosity.tex index a846b78..a922052 100644 --- a/library/set/equinumerosity.tex +++ b/library/set/equinumerosity.tex @@ -15,7 +15,7 @@ $A\approx A$. \end{proposition} \begin{proof} - $\identity{A}$ is a bijection from $A$ to $A$ by \cref{id_is_bijection}. + $\identity{A}$ is a bijection from $A$ to $A$. %by \cref{id_is_bijection}. Follows by \cref{equinum}. \end{proof} diff --git a/library/topology/urysohn2.tex b/library/topology/urysohn2.tex index 9990199..97bbc70 100644 --- a/library/topology/urysohn2.tex +++ b/library/topology/urysohn2.tex @@ -13,6 +13,7 @@ \import{set/fixpoint.tex} \import{set/product.tex} \import{topology/real-topological-space.tex} +\import{set/equinumerosity.tex} \section{Urysohns Lemma} @@ -251,6 +252,7 @@ + \begin{proposition}\label{naturals_leq_on_suc} For all $n,m \in \naturals$ such that $m < \suc{n}$ we have $m \leq n$. \end{proposition} @@ -358,6 +360,218 @@ Omitted. \end{proof} +\begin{lemma}\label{naturals_suc_injective} + Suppose $n,m \in \naturals$. + $n = m$ iff $\suc{n} = \suc{m}$. +\end{lemma} + +\begin{lemma}\label{naturals_rless_implies_not_eq} + Suppose $n,m \in \naturals$. + Suppose $n < m$. + Then $n \neq m$. +\end{lemma} + +\begin{lemma}\label{cardinality_of_singleton} + For all $x$ such that $x \neq \emptyset$ we have $\{x\}$ has cardinality $1$. +\end{lemma} +\begin{proof} + Omitted. + %Fix $x$. + %Suppose $x \neq \emptyset$. + %Let $X = \{x\}$. + %$\seq{\zero}{\zero}=1$. + %$\seq{\zero}{\zero}$ has cardinality $1$. + %$X \setminus \{x\} = \emptyset$. + %$1 = \{\emptyset\}$. + %Let $F = \{(x,\emptyset)\}$. + %$F$ is a relation. + %$\dom{F} = X$. + %$\emptyset \in \ran{F}$. + %for all $x \in 1$ we have $x = \emptyset$. + %$\ran{F} = 1$. + %$F$ is injective. + %$F \in \surj{X}{1}$. + %$F$ is a bijection from $X$ to $1$. +\end{proof} + +\begin{lemma}\label{cardinality_n_plus_1} + For all $n \in \naturals$ we have $n+1$ has cardinality $n+1$. +\end{lemma} +\begin{proof} + Omitted. +\end{proof} + +\begin{lemma}\label{cardinality_n_m_plus} + For all $n,m \in \naturals$ we have $n+m$ has cardinality $n+m$. +\end{lemma} +\begin{proof} + Omitted. +\end{proof} + +\begin{lemma}\label{cardinality_plus_disjoint} + Suppose $X \inter Y = \emptyset$. + Suppose $X$ is finite. + Suppose $Y$ is finite. + Suppose $X$ has cardinality $n$. + Suppose $Y$ has cardinality $m$. + Then $X \union Y$ has cardinality $m+n$. +\end{lemma} +\begin{proof} + Omitted. +\end{proof} + + + + +\begin{lemma}\label{injective_functions_is_bijection_if_bijection_there_is_other_bijection_1} + Suppose $f$ is a bijection from $X$ to $Y$. + Suppose $g$ is a function from $X$ to $Y$. + Suppose $g$ is injective. + Suppose $X$ is finite and $Y$ is finite. + For all $n \in \naturals$ such that $Y$ has cardinality $n$ we have $g$ is a bijection from $X$ to $Y$. +\end{lemma} +\begin{proof}[Proof by \in-induction on $n$] + Assume $n \in \naturals$. + Suppose $Y$ has cardinality $n$. + $X$ has cardinality $n$ by \cref{bijection_converse_is_bijection,bijection_circ,regularity,cardinality,foundation,empty_eq,notin_emptyset}. + \begin{byCase} + \caseOf{$n = \zero$.} + Follows by \cref{converse_converse_eq,injective_converse_is_function,converse_is_relation,dom_converse,id_is_function_to,id_ran,ran_circ_exact,circ,ran_converse,emptyset_is_function_on_emptyset,bijective_converse_are_funs,relext,function_member_elim,bijection_is_function,cardinality,bijections_dom,in_irrefl,codom_of_emptyset_can_be_anything,converse_emptyset,funs_elim,neq_witness,id}. + \caseOf{$n \neq \zero$.} + %Take $n' \in n$ such that $n = \suc{n'}$. + %$n' \in \naturals$. + %$n' + 1 = n$. + %Take $y$ such that $y \in Y$ by \cref{funs_type_apply,apply,bijections_to_funs,cardinality,foundation}. + %Let $Y' = Y \setminus \{y\}$. + %$Y' \subseteq Y$. + %$Y'$ is finite. + %There exist $m \in \naturals$ such that $Y'$ has cardinality $m$. + %Take $m \in \naturals$ such that $Y'$ has cardinality $m$. + %Then $Y'$ has cardinality $n'$. + %Let $x' = \apply{\converse{f}}{y'}$. + %$x' \in X$. + %Let $X' = X \setminus \{x'\}$. + %$X' \subseteq X$. + %$X'$ is finite. + %There exist $m' \in \naturals$ such that $X'$ has cardinality $m'$. + %Take $m' \in \naturals$ such that $X''$ has cardinality $m'$. + %Then $X'$ has cardinality $n'$. + %Let $f'(z)=f(z)$ for $z \in X'$. + %$\dom{f'} = X'$. + %$\ran{f'} = Y'$. + %$f'$ is a bijection from $X'$ to $Y'$. + %Let $g'(z) = g(z)$ for $z \in X'$. + %Then $g'$ is injective. + %Then $g'$ is a bijection from $X'$ to $Y'$ by \cref{rels,id_elem_rels,times_empty_right,powerset_emptyset,double_complement_union,unions_cons,union_eq_cons,union_as_unions,unions_pow,cons_absorb,setminus_self,bijections_dom,ran_converse,id_apply,apply,unions_emptyset,img_emptyset,zero_is_empty}. + %Define $G : X \to Y$ such that $G(z)= + %\begin{cases} + % g'(z) & \text{if} z \in X' \\ + % y' & \text{if} z = x' + %\end{cases}$ + %$G = g$. + %Follows by \cref{double_relative_complement,fun_to_surj,bijections,funs_surj_iff,bijections_to_funs,neq_witness,surj,funs_elim,setminus_self,cons_subseteq_iff,cardinality,ordinal_empty_or_emptyset_elem,naturals_inductive_set,natural_number_is_ordinal_for_all,foundation,inter_eq_left_implies_subseteq,inter_emptyset,cons_subseteq_intro,emptyset_subseteq}. + Omitted. + \end{byCase} + %$\converse{f}$ is a bijection from $Y$ to $X$. + %Let $h = g \circ \converse{f}$. + %It suffices to show that $\ran{g} = Y$ by \cref{fun_to_surj,dom_converse,bijections}. + %It suffices to show that for all $y \in Y$ we have there exist $x \in X$ such that $g(x)=y$ by \cref{funs_ran,subseteq_antisymmetric,fun_ran_iff,apply,funs_elim,ran_converse,subseteq}. +% + %Fix $y \in Y$. + %Take $x \in X$ such that $\apply{\converse{f}}{y} = x$. + +\end{proof} + +\begin{lemma}\label{injective_functions_is_bijection_if_bijection_there_is_other_bijection} + Suppose $f$ is a bijection from $X$ to $Y$. + Suppose $g$ is a function from $X$ to $Y$. + Suppose $g$ is injective. + Suppose $Y$ is finite. + Then $g$ is a bijection from $X$ to $Y$. +\end{lemma} +\begin{proof} + There exist $n \in \naturals$ such that $Y$ has cardinality $n$ by \cref{cardinality,injective_functions_is_bijection_if_bijection_there_is_other_bijection_1,finite}. + Follows by \cref{injective_functions_is_bijection_if_bijection_there_is_other_bijection_1,cardinality,equinum_tran,equinum_sym,equinum,finite}. +\end{proof} + + + +\begin{lemma}\label{naturals_bijection_implies_eq} + Suppose $n,m \in \naturals$. + Suppose $f$ is a bijection from $n$ to $m$. + Then $n = m$. +\end{lemma} +\begin{proof} + $n$ is finite. + $m$ is finite. + Suppose not. + Then $n < m$ or $m < n$. + \begin{byCase} + \caseOf{$n < m$.} + Then $n \in m$. + There exist $x \in m$ such that $x \notin n$. + $\identity{n}$ is a function from $n$ to $m$. + $\identity{n}$ is injective. + $\apply{\identity{n}}{n} = n$ by \cref{id_ran,ran_of_surj,bijections,injective_functions_is_bijection_if_bijection_there_is_other_bijection}. + Follows by \cref{inhabited,regularity,function_apply_default,apply,id_dom,in_irrefl,function_member_elim,bijections_dom,zero_is_empty,bijection_is_function,foundation,bijections,ran_of_surj,dom_converse,converse_emptyset,dom_emptyset}. + \caseOf{$m < n$.} + Then $m \in n$. + There exist $x \in n$ such that $x \notin m$. + $\converse{f}$ is a bijection from $m$ to $n$. + $\identity{m}$ is a function from $m$ to $n$. + $\identity{m}$ is injective. + $\apply{\identity{m}}{m} = m$ by \cref{id_ran,ran_of_surj,bijections,injective_functions_is_bijection_if_bijection_there_is_other_bijection}. + Follows by \cref{inhabited,regularity,function_apply_default,apply,id_dom,in_irrefl,function_member_elim,bijections_dom,zero_is_empty,bijection_is_function,foundation,bijections,ran_of_surj,dom_converse,converse_emptyset,dom_emptyset}. + \end{byCase} +\end{proof} + +\begin{lemma}\label{naturals_eq_iff_bijection} + Suppose $n,m \in \naturals$. + $n = m$ iff there exist $f$ such that $f$ is a bijection from $n$ to $m$. +\end{lemma} +\begin{proof} + We show that if $n = m$ then there exist $f$ such that $f$ is a bijection from $n$ to $m$. + \begin{subproof} + Trivial. + \end{subproof} + We show that for all $k \in \naturals$ we have if there exist $f$ such that $f$ is a bijection from $k$ to $m$ then $k = m$. + \begin{subproof}%[Proof by \in-induction on $k$] + %Assume $k \in \naturals$. + %\begin{byCase} + % \caseOf{$k = \zero$.} + % Trivial. + % \caseOf{$k \neq \zero$.} + % \begin{byCase} + % \caseOf{$m = \zero$.} + % Trivial. + % \caseOf{$m \neq \zero$.} + % Take $k' \in \naturals$ such that $\suc{k'} = k$. + % Then $k' \in k$. + % Take $m' \in \naturals$ such that $m = \suc{m'}$. + % Then $m' \in m$. + % + % \end{byCase} + %\end{byCase} + \end{subproof} +\end{proof} + +\begin{lemma}\label{seq_from_zero_suc_cardinality_eq_upper_border} + Suppose $n,m \in \naturals$. + Suppose $\seq{\zero}{n}$ has cardinality $\suc{m}$. + Then $n = m$. +\end{lemma} +\begin{proof} + We have $\seq{\zero}{n} = \suc{n}$. + Take $f$ such that $f$ is a bijection from $\seq{\zero}{n}$ to $\suc{m}$. + Therefore $n=m$ by \cref{suc_injective,naturals_inductive_set,cardinality,naturals_eq_iff_bijection}. +\end{proof} + +\begin{lemma}\label{seq_from_zero_cardinality_eq_upper_border_set_eq} + Suppose $n,m \in \naturals$. + Suppose $\seq{\zero}{n}$ has cardinality $\suc{m}$. + Then $\seq{\zero}{n} = \seq{\zero}{m}$. +\end{lemma} + \begin{proposition}\label{existence_normal_ordered_urysohn} Let $X$ be a urysohn space. Suppose $U$ is a urysohnchain of $X$. @@ -384,23 +598,24 @@ Take $f$ such that there exist $k'$ such that $f$ is a bijection from $\seq{\zero}{k'}$ to $\dom{U}$ and $\dom{U}$ has cardinality $\suc{k'}$ and for all $n',m' \in \seq{\zero}{k'}$ such that $n' < m'$ we have $f(n') < f(m')$. Take $k'$ such that $f$ is a bijection from $\seq{\zero}{k'}$ to $\dom{U}$ and $\dom{U}$ has cardinality $\suc{k'}$ and for all $n',m' \in \seq{\zero}{k'}$ such that $n' < m'$ we have $f(n') < f(m')$. $\seq{\zero}{k'}$ has cardinality $\suc{k}$ by \cref{omega_is_an_ordinal,suc,ordinal_transitivity,bijection_converse_is_bijection,seq_zero_to_n_eq_to_suc_n,cardinality,bijections_dom,bijection_circ}. - We show that $\seq{\zero}{k'} = \seq{\zero}{k}$. - \begin{subproof} - We show that $\seq{\zero}{k'} \subseteq \seq{\zero}{k}$. - \begin{subproof} - It suffices to show that for all $y \in \seq{\zero}{k'}$ we have $y \in \seq{\zero}{k}$. - Fix $y \in \seq{\emptyset}{k'}$. - Then $y \leq k'$. - Therefore $y \in k'$ or $y = k'$ by \cref{omega_is_an_ordinal,suc_intro_self,ordinal_transitivity,cardinality,rless_eq_in_for_naturals,m_to_n_set}. - %Then $\seq{\emptyset}{k'} \in \suc{k}$. - Therefore $y \in \suc{k}$. - Therefore $y \in \seq{\emptyset}{k}$. - \end{subproof} - We show that for all $y \in \seq{\zero}{k}$ we have $y \in \seq{\zero}{k'}$. - \begin{subproof} - Fix $y \in \seq{\emptyset}{k}$. - \end{subproof} - \end{subproof} + $\seq{\zero}{k'} = \seq{\zero}{k}$ by \cref{omega_is_an_ordinal,seq_from_zero_cardinality_eq_upper_border_set_eq,suc_subseteq_implies_in,suc_subseteq_elim,ordinal_suc_subseteq,cardinality}. + %We show that $\seq{\zero}{k'} = \seq{\zero}{k}$. + %\begin{subproof} + % We show that $\seq{\zero}{k'} \subseteq \seq{\zero}{k}$. + % \begin{subproof} + % It suffices to show that for all $y \in \seq{\zero}{k'}$ we have $y \in \seq{\zero}{k}$. + % Fix $y \in \seq{\emptyset}{k'}$. + % Then $y \leq k'$. + % Therefore $y \in k'$ or $y = k'$ by \cref{omega_is_an_ordinal,suc_intro_self,ordinal_transitivity,cardinality,rless_eq_in_for_naturals,m_to_n_set}. + % + % Therefore $y \in \suc{k}$. + % Therefore $y \in \seq{\emptyset}{k}$. + % \end{subproof} + % We show that for all $y \in \seq{\zero}{k}$ we have $y \in \seq{\zero}{k'}$. + % \begin{subproof} + % Fix $y \in \seq{\emptyset}{k}$. + % \end{subproof} + %\end{subproof} \end{subproof} Take $F$ such that $F$ is a bijection from $\seq{\zero}{k}$ to $\dom{U}$ and for all $n',m' \in \seq{\zero}{k}$ such that $n' < m'$ we have $F(n') < F(m')$. Let $N = \seq{\zero}{k}$. @@ -452,7 +667,9 @@ $f$ is staircase sequence of $U$ iff $f$ is a sequence and $U$ is a lifted urysohnchain of $X$ and $\dom{U} = \dom{f}$ and for all $n \in \dom{U}$ we have $\at{f}{n}$ is a staircase function adapted to $\at{U}{n}$ in $U$. \end{definition} - +\begin{definition} + +\end{definition} @@ -565,8 +782,15 @@ \end{subproof} Take $U$ such that $U$ is a lifted urysohnchain of $X$ and $\at{U}{\zero} = U_0$. + We show that there exist $S$ such that $S$ is staircase sequence of $U$. + \begin{subproof} + Omitted. + \end{subproof} + Take $S$ such that $S$ is staircase sequence of $U$. + For all $x \in \carrier[X]$ we have there exist $r,R$ such that $r \in \reals$ and $R$ is a sequence of reals and $\dom{R} = \naturals$ and $R$ converge to $r$ and for all $n \in \naturals$ we have $\at{R}{n} = \apply{\at{S}{n}}{x}$. + We show that for all $x \in \carrier[X]$ there exists $r \in \intervalclosed{a}{b}$ such that for . |
