diff options
Diffstat (limited to 'library')
| -rw-r--r-- | library/wunschzettel.tex | 99 |
1 files changed, 99 insertions, 0 deletions
diff --git a/library/wunschzettel.tex b/library/wunschzettel.tex new file mode 100644 index 0000000..b2681fd --- /dev/null +++ b/library/wunschzettel.tex @@ -0,0 +1,99 @@ +%This is just a .tex file with a wishlist of functionalitys + + +Tupel struct + +\newtheorem{struct2}[theoremcount]{Struct2} + +\begin{theorem} + %Some Theorem. +\end{theorem} +\begin{proof} + %Wish for nice Function definition. --------------------- + + %Some Proof where we need a Function. + %Privisuly defined. + $n \in \naturals$. + There is a Set $A = \{A_{0}, ..., A_{n}\}$. + For all $i$ we have $A_{i} \subseteq X$. + + Define function $f: X \to Y$, + \begin{align} + &x \mapsto \rfrac{y}{n} &; if \exists k \in \{1, ... n\}. x \in A_{k} \\ + &x \mapsto 0 &; if x \phi(x) \\ + %phi is some fol formula + + &x \mapsto \eta &; for \phi(x) and \psi(\eta) + + &x \mapsto \some_term(x)(u)(v)(w) &; \exist.u,v,w \psi(x)(u)(v)(w) \\ + % here i see the real need of varibles that can be useds in the define term + + &x \mapsto \some_else_term(x) &; else + % the else term would be great + + % the following axioms should be automaticly added. + % \dom{f} = X + % \ran{f} \subseteq Y + % f is function + + % therefor we should add the prompt for a proof that f is well defined + \end{align} + \begin{proof_well_defined} + % we need to proof that f allways maps X to Y + \end{proof_well_defined} + + % more proof but now i can use the function f + + % -------------------------------------------------------- + + +\end{proof} + + +%------------------------------------------ +% My wish for a new struct +% I think this could be just get implemented along with the old struct + + +% If take we only take tupels, +% then just a list of defining fol formulas should be enougth. +\begin{struct2} + We say $(X,O)$ is a topological space if + \begin{enumerate} + \item $X$ is a set. % or X = \{...\mid .. \} or X = \naturals ... or ... + \item $O \subseteq \pow X$. + \item $\forall x,y \in O. x \union y \in O$ + \item %another formula + \item %.... + \end{enumerate} +\end{struct2} + + +% Then the proof of some thing is a structure is more easy. +% Since if we have just a tupel and some formulas which has to be fufilled, +% then we can make a proof as follows. + +\begin{struct2} + We say $(A,i,N)$ is a indexed set if + \begin{enumerate} + \item $f$ is a bijection from $N$ to $A$ + \item $N \subseteq \naturals$ + \end{enumerate} +\end{struct2} + + +\begin{theorem} + Let $A = \{ \{n\} \mid n \in \naturals \}$. + Let function $f: \naturals \to \pow{\naturals}$ such that, + \begin{algin} + \item x \mapsto \{x\} ; x \in \naturals + \end{algin} + Then $(A, f, \naturals)$ is a indexed set. +\end{theorem} +\begin{proof} + % Then we only need to proof that: + % \ran{f} = A + % \dom{f} = \naturals + % f is a bijection between $\naturals$ to $A$. +\end{proof} + |
