diff options
Diffstat (limited to 'source/Checking.hs')
| -rw-r--r-- | source/Checking.hs | 13 |
1 files changed, 7 insertions, 6 deletions
diff --git a/source/Checking.hs b/source/Checking.hs index 817c477..6d55ee1 100644 --- a/source/Checking.hs +++ b/source/Checking.hs @@ -543,7 +543,7 @@ checkProof = \case checkCalc calc assume [Asm (calcResult calc)] checkProof continue - DefineFunctionMathy funVar domVar ranVar argVar definitions continue -> do + DefineFunctionMathy funVar argVar domVar ranExpr definitions continue -> do -- We have f: X \to Y and x \mapsto ... -- definition is a nonempty list of (expresssion e, formula phi) -- such that f(x) = e if phi(x) @@ -558,8 +558,8 @@ checkProof = \case setGoals [makeForall [argVar] ((TermVar argVar `IsElementOf` TermVar domVar) `Iff` subdomainConjuctionLocalFunction argVar definitions )] -- check the disjunct union tellTasks - assume [Asm (makeForall [argVar] ((TermVar argVar `IsElementOf` TermVar domVar) `Implies` (TermOp ApplySymbol [TermVar funVar, TermVar argVar] `IsElementOf` TermVar ranVar)))] -- function f from \dom(f) \to \ran(f) - assume (functionSubdomianExpression funVar argVar definitions) --behavior on the subdomians + assume [Asm (makeForall [argVar] ((TermVar argVar `IsElementOf` TermVar domVar) `Implies` (TermOp ApplySymbol [TermVar funVar, TermVar argVar] `IsElementOf` ranExpr)))] -- function f from \dom(f) \to \ran(f) + assume (functionSubdomianExpression funVar argVar (NonEmpty.toList definitions)) --behavior on the subdomians setGoals goals checkProof continue @@ -571,9 +571,10 @@ subdomainConjuctionLocalFunction argVar defintions = in TermVar argVar `IsElementOf` makeConjunction stmts -functionSubdomianExpression :: VarSymbol -> VarSymbol -> NonEmpty (Term, Formula) -> [Asm] -functionSubdomianExpression f a nxs = case nxs of - x:|xs -> singleFunctionSubdomianExpression f a x : functionSubdomianExpression f a (NonEmpty.fromList xs) +functionSubdomianExpression :: VarSymbol -> VarSymbol -> [(Term, Formula)] -> [Asm] +functionSubdomianExpression f a (x:xs) = singleFunctionSubdomianExpression f a x : functionSubdomianExpression f a xs +functionSubdomianExpression _ _ [] = [] + singleFunctionSubdomianExpression :: VarSymbol -> VarSymbol -> (Term, Formula) -> Asm |
