From 3e4e7afc69bf43b3b45bde346c92f267e9b15c39 Mon Sep 17 00:00:00 2001 From: adelon <22380201+adelon@users.noreply.github.com> Date: Wed, 22 May 2024 16:58:06 +0200 Subject: Add lemma `filter_setminus_in` --- library/set/filter.tex | 15 +++++++++++++-- 1 file changed, 13 insertions(+), 2 deletions(-) diff --git a/library/set/filter.tex b/library/set/filter.tex index 93309de..59b647f 100644 --- a/library/set/filter.tex +++ b/library/set/filter.tex @@ -38,6 +38,19 @@ Follows by \cref{filter}. \end{proof} +\begin{proposition}\label{filter_setminus_in} + Let $F$ be a filter on $S$. + Suppose $A\in F$. + Suppose $B\subseteq S$ and $S\setminus B\in F$. + Then $A\setminus B\in F$. +\end{proposition} +\begin{proof} + We have $A\subseteq S$. + Thus $A\setminus B = A\inter (S\setminus B)$ by \cref{setminus_eq_inter_complement}. + Now $S\setminus B\subseteq S$. + Follows by \cref{filter_inter_in_iff}. +\end{proof} + \subsection{Principal filters over a set} \begin{definition}\label{principalfilter} @@ -72,8 +85,6 @@ Suppose $X\notin\principalfilter{S}{A}$. Then $A\not\subseteq X$. \end{proposition} -\begin{proof} -\end{proof} \begin{definition}\label{maximalfilter} $F$ is a maximal filter on $S$ iff -- cgit v1.2.3