From 41357a4c0ad22b1ea0094ea52c832d117ec3fec4 Mon Sep 17 00:00:00 2001 From: Simon-Kor <52245124+Simon-Kor@users.noreply.github.com> Date: Mon, 12 Aug 2024 16:30:47 +0200 Subject: way way way way more urysohn --- library/topology/urysohn.tex | 51 +++++++++++++++++++++++++++++++++++++++----- 1 file changed, 46 insertions(+), 5 deletions(-) diff --git a/library/topology/urysohn.tex b/library/topology/urysohn.tex index 3be3c30..c94dbd4 100644 --- a/library/topology/urysohn.tex +++ b/library/topology/urysohn.tex @@ -98,6 +98,10 @@ The first tept will be a formalisation of chain constructions. $\intervalclosed{a}{b} = \{x \in \reals \mid a \leq x \leq b\}$. \end{definition} +\begin{definition}\label{intervalopen} + $\intervalopen{a}{b} = \{ x \in \reals \mid a < x < b\}$. +\end{definition} + \begin{struct}\label{staircase_function} A staircase function $f$ is a onesorted structure equipped with @@ -333,6 +337,34 @@ The first tept will be a formalisation of chain constructions. \end{proof} +\begin{lemma}\label{fraction1} + Let $x \in \reals$. + Then for all $y \in \reals$ such that $x \neq y$ we have there exists $r \in \rationals$ such that $y < r < x$ or $x < r < y$. +\end{lemma} +\begin{proof} + Omitted. +\end{proof} + +\begin{lemma}\label{frection2} + Suppose $a,b \in \reals$. + Suppose $a < b$. + Then $\intervalopen{a}{b}$ is infinite. +\end{lemma} +\begin{proof} + Omitted. +\end{proof} + +\begin{lemma}\label{frection3} + Suppose $a,b \in \reals$. + Suppose $\zero < a < 1$. + Suppose $\zero < b < 1$. + % Here take exist n such that n/2^n is between a and b + T +\end{lemma} +\begin{proof} + Omitted. +\end{proof} + \begin{proposition}\label{existence_of_staircase_function} Let $X$ be a urysohn space. @@ -489,8 +521,9 @@ The first tept will be a formalisation of chain constructions. % (n,f) \in \gamma <=> \phi(n,f) - % with \phi (n,f) := (x \in (A_k) \ (A_k-1)) => f(x) = ( k / 2^n ) - % \/ (x \notin A_k for all k \in {1,..,n} => f(x) = 1 + % with \phi (n,f) := + % (x \in (A_k) \ (A_k-1)) ==> f(x) = ( k / 2^n ) + % \/ (x \notin A_k for all k \in {1,..,n} ==> f(x) = 1 ( (n' = \zero) \land (x \in \index[\index[\zeta](n)](n')) @@ -556,7 +589,15 @@ The first tept will be a formalisation of chain constructions. It suffices to show that $g(x) \in \reals$. There exist $k \in \reals$ such that for all $\epsilon \in \reals$ such that $\epsilon > \zero$ we have there exist $N \in \naturals$ such that for all $N' \in \naturals$ such that $N' > N$ we have $\abs{\apply{\gamma(n)}{x} - k} < \epsilon$. - $g(x)= k$. + + We show that for all $\epsilon \in \reals$ such that $\epsilon > \zero$ we have there exist $N \in \naturals$ such that for all $N' \in \naturals$ such that $N' > N$ we have $\abs{\apply{\gamma(n)}{x} - g(x)} < \epsilon$ and $g(x)= k$. + \begin{subproof} + Fix $\epsilon \in \reals$. + %Assume $\epsilon > \zero$. + %Take $N' \in \naturals$ such that $\epsilon > \rfrac{1}{\pot(N')}$. + \end{subproof} + + Follows by \cref{apply,plus_one_order,ordinal_iff_suc_ordinal,natural_number_is_ordinal,subseteq,naturals_subseteq_reals,naturals_is_equal_to_two_times_naturals,reals_one_bigger_zero,one_in_reals,ordinal_prec_trichotomy,omega_is_an_ordinal,suc_intro_self,two_in_naturals,in_asymmetric,suc}. @@ -569,13 +610,13 @@ The first tept will be a formalisation of chain constructions. Then $x \in \carrier[X]$. \begin{byCase} \caseOf{$x \in A$.} - For all $n \in \naturals$ we have $\apply{\gamma(n)}{x} = 0$. + For all $n \in \naturals$ we have $\apply{\gamma(n)}{x} = \zero$. \caseOf{$x \notin A$.} \begin{byCase} \caseOf{$x \in B$.} - OFor all $n \in \naturals$ we have $\apply{\gamma(n)}{x} = 1$. + For all $n \in \naturals$ we have $\apply{\gamma(n)}{x} = 1$. \caseOf{$x \notin B$.} Omitted. -- cgit v1.2.3