From 63518b2e0bfdf0308fba30920a7a3bb7f61da994 Mon Sep 17 00:00:00 2001 From: Simon-Kor <52245124+Simon-Kor@users.noreply.github.com> Date: Tue, 14 May 2024 16:55:40 +0200 Subject: work on metric spaces --- library/numbers.tex | 49 +++++++++++++++++++++++++++++++++++++++ library/topology/metric-space.tex | 45 +++++++++++++++++++++++++++++++++-- 2 files changed, 92 insertions(+), 2 deletions(-) diff --git a/library/numbers.tex b/library/numbers.tex index a0e2211..5dd06da 100644 --- a/library/numbers.tex +++ b/library/numbers.tex @@ -144,3 +144,52 @@ For all $x,y \in \reals$ if $x \leq y \leq x$ then $x=y$. \end{lemma} +\begin{axiom}\label{reals_axiom_minus} + For all $x \in \reals$ $x - x = \zero$. +\end{axiom} + +\begin{lemma}\label{reals_minus} + Assume $x,y \in \reals$. If $x - y = \zero$ then $x=y$. +\end{lemma} + +%\begin{definition}\label{reasl_supremum} %expaction "there exists" after \mid +% $\rsup{X} = \{z \mid \text{ $z \in \reals$ and for all $x,y$ such that $x \in X$ and $y,x \in \reals$ and $x < y$ we have $z \leq y$ }\}$. +%\end{definition} + +\begin{definition}\label{upper_bound} + $x$ is an upper bound of $X$ iff for all $y \in X$ we have $x > y$. +\end{definition} + +\begin{definition}\label{least_upper_bound} + $x$ is a least upper bound of $X$ iff $x$ is an upper bound of $X$ and for all $y$ such that $y$ is an upper bound of $X$ we have $x \leq y$. +\end{definition} + +\begin{lemma}\label{supremum_unique} + %Let $x,y \in \reals$ and let $X$ be a subset of $\reals$. + If $x$ is a least upper bound of $X$ and $y$ is a least upper bound of $X$ then $x = y$. +\end{lemma} + +\begin{definition}\label{supremum_reals} + $x$ is the supremum of $X$ iff $x$ is a least upper bound of $X$. +\end{definition} + + + + +\begin{definition}\label{lower_bound} + $x$ is an lower bound of $X$ iff for all $y \in X$ we have $x < y$. +\end{definition} + +\begin{definition}\label{greatest_lower_bound} + $x$ is a greatest lower bound of $X$ iff $x$ is an lower bound of $X$ and for all $y$ such that $y$ is an lower bound of $X$ we have $x \geq y$. +\end{definition} + +\begin{lemma}\label{infimum_unique} + %Let $x,y \in \reals$ and let $X$ be a subset of $\reals$. + If $x$ is a greatest lower bound of $X$ and $y$ is a greatest lower bound of $X$ then $x = y$. +\end{lemma} + +\begin{definition}\label{infimum_reals} + $x$ is the supremum of $X$ iff $x$ is a greatest lower bound of $X$. +\end{definition} + diff --git a/library/topology/metric-space.tex b/library/topology/metric-space.tex index 2a31d95..8ec83f7 100644 --- a/library/topology/metric-space.tex +++ b/library/topology/metric-space.tex @@ -1,6 +1,7 @@ \import{topology/topological-space.tex} \import{numbers.tex} \import{function.tex} +\import{set/powerset.tex} \section{Metric Spaces} @@ -17,7 +18,46 @@ $\openball{r}{x}{f} = \{z \in M \mid \text{ $f$ is a metric on $M$ and $f(x,z) < r$ } \}$. \end{definition} -%TODO: \metric_opens{d} = {hier die construction für topology} + + +\begin{definition}\label{induced_topology} + $O$ is the induced topology of $d$ in $M$ iff + $O \subseteq \pow{M}$ and + $d$ is a metric on $M$ and + for all $x,r,A,B,C$ + such that $x \in M$ and $r \in \reals$ and $A,B \in O$ and $C$ is a family of subsets of $O$ + we have $\openball{r}{x}{d} \in O$ and $\unions{C} \in O$ and $A \inter B \in O$. +\end{definition} + +%\begin{definition} +% $\projcetfirst{A} = \{a \mid \exists x \in X \text{there exist $x \i } \}$ +%\end{definition} + +\begin{definition}\label{set_of_balls} + $\balls{d}{M} = \{ O \in \pow{M} \mid \text{there exists $x,r$ such that $r \in \reals$ and $x \in M$ we have $O = \openball{r}{x}{d}$ } \}$. +\end{definition} + + +\begin{definition}\label{toindsas} + $\metricopens{d}{M} = \{O \in \pow{M} \mid \text{ + $d$ is a metric on $M$ and + for all $x,r,A,B,C$ + such that $x \in M$ and $r \in \reals$ and $A,B \in O$ and $C$ is a family of subsets of $O$ + we have $\openball{r}{x}{d} \in O$ and $\unions{C} \in O$ and $A \inter B \in O$. + } \}$. + +\end{definition} + +\begin{theorem}\label{metric_induce_a_topology} + + + +\end{theorem} + + + + +%TODO: \metric_opens{d} = {hier die construction für topology} DONE. %TODO: Die induzierte topology definieren und dann in struct verwenden. @@ -44,7 +84,7 @@ \begin{lemma}\label{union_of_open_balls_is_open} Let $M$ be a metric space. - For all $U,V \subseteq M$ if $U$ is an open ball in $M$ and $V$ is an open ball in $M$ then $U \union V$ is open in $M$. + For all $U,V \subseteq M$ if $U$, $V$ are open balls in $M$ then $U \union V$ is open in $M$. \end{lemma} @@ -56,6 +96,7 @@ + \begin{lemma}\label{metric_implies_topology} Let $M$ be a set, and let $f$ be a metric on $M$. Then $M$ is a metric space. -- cgit v1.2.3