From 6eea98cf3e66a07251e6370ea948898799d5055b Mon Sep 17 00:00:00 2001 From: Simon-Kor <52245124+Simon-Kor@users.noreply.github.com> Date: Sat, 13 Apr 2024 13:01:14 +0200 Subject: first formalisation of addition on naturals We try to Implement the Addition on natural numbers by a relation on N \times N to N such that some of the axioms of the addition holds --- latex/naproche.sty | 2 ++ library/nat.tex | 40 ++++++++++++++++++++++++++++++++++++++-- 2 files changed, 40 insertions(+), 2 deletions(-) diff --git a/latex/naproche.sty b/latex/naproche.sty index 9764693..d975f21 100644 --- a/latex/naproche.sty +++ b/latex/naproche.sty @@ -127,6 +127,8 @@ \newcommand{\Univ}[1]{\fun{Univ}(#1)} \newcommand{\upward}[2]{#2^{\uparrow #1}} \newcommand{\LeftOrb}[2]{#2\cdot #1} +\newcommand{\addpair}{\mathcal{H}} +%\newcommand{\add}[2]{(#1 + #2)} \newcommand\restrl[2]{{% we make the whole thing an ordinary symbol diff --git a/library/nat.tex b/library/nat.tex index 529ba54..849c610 100644 --- a/library/nat.tex +++ b/library/nat.tex @@ -1,5 +1,5 @@ \import{set/suc.tex} - +\import{set.tex} \section{Natural numbers} @@ -17,5 +17,41 @@ \end{axiom} \begin{abbreviation}\label{naturalnumber} - $n$ is a natural number iff $n\in\naturals$. + $n$ is a natural number iff $n\in \naturals$. \end{abbreviation} + +\begin{lemma}\label{emptyset_in_naturals} + $\emptyset\in\naturals$. +\end{lemma} + +%\begin{abbreviation}\label{zero_is_emptyset} +% $0 = \emptyset$. +%\end{abbreviation} + +%\begin{definition}\label{additionpair} +% $x$ is an Additionpair iff $x \in ((\naturals\times \naturals)\times \naturals)$. +%\end{definition} + +%\begin{lemma}\label{zero_is_in_naturals} +% Let $n\in \naturals$. $((n, \emptyset), n)$ is an Additionpair. +%\end{lemma} + +%\begin{definition}\label{valid_additionpair} +% $x$ is a vaildaddition iff there exist $n \in \naturals$ we have $x = ((0, n), n)$. +%\end{definition} + + + +\begin{axiom}\label{addpair_set} + $\addpair$ is a set. +\end{axiom} + + + + +\begin{axiom}\label{addition_naturals} + $x \in \addpair$ iff $x \in ((\naturals\times \naturals)\times \naturals)$ and there exist $n \in \naturals$ such that $x = ((n, \emptyset), n)$. +\end{axiom} + + + -- cgit v1.2.3