From 8155ba18260743b1e45507e6fb8d4f80c22c425e Mon Sep 17 00:00:00 2001 From: Simon-Kor <52245124+Simon-Kor@users.noreply.github.com> Date: Fri, 30 Aug 2024 19:25:00 +0200 Subject: working commit --- library/topology/urysohn.tex | 151 +++++++++++++++++++++++++++++-------------- 1 file changed, 101 insertions(+), 50 deletions(-) diff --git a/library/topology/urysohn.tex b/library/topology/urysohn.tex index 79d65dc..e1fa924 100644 --- a/library/topology/urysohn.tex +++ b/library/topology/urysohn.tex @@ -231,6 +231,51 @@ The first tept will be a formalisation of chain constructions. $\pot(n) = \apply{\pot}{n}$. \end{abbreviation} +%Take all points, besids one but then take all open sets not containing x but all other, so \{x\} has to be closed +\begin{axiom}\label{hausdorff_implies_singltons_closed} + For all $X$ such that $X$ is Hausdorff we have + for all $x \in \carrier[X]$ we have $\{x\}$ is closed in $X$. +\end{axiom} + +\begin{lemma}\label{urysohn_set_in_between} + Let $X$ be a urysohn space. + Suppose $A,B \in \closeds{X}$. + Suppose $A \subset B$. + %Suppose $B \union A \neq \carrier[X]$. + There exist $C \in \closeds{X}$ + such that $A \subset C \subset B$ or $A, B \in \opens[X]$. +\end{lemma} +\begin{proof} + We have $B \setminus A$ is inhabited. + Take $x$ such that $x \in (B \setminus A)$. + Then $A \subset (A \union \{x\})$. + Let $C = \closure{A \union \{x\}}{X}$. + We have $(A \union \{x\}) \subseteq \closure{A \union \{x\}}{X}$. + Therefore $A \subset C$. + $A \subseteq B \subseteq \carrier[X]$. + $x \in B$. + Therefore $x \in \carrier[X]$. + $(A \union \{x\}) \subseteq \carrier[X]$. + We have $\closure{A \union \{x\}}{X}$ is closed in $X$ by \cref{closure_is_closed}. + Therefore $C$ is closed in $X$ by \cref{closure_is_closed}. + \begin{byCase} + \caseOf{$C = B$.} + %We have $\carrier[X] \setminus A$ is open in $X$. + %We have $\carrier[X] \setminus B$ is open in $X$. + %$\{x\}$ is closed in $X$.% by \cref{hausdorff_implies_singltons_closed}. + %$A \union \{x\} = C$. + %$\carrier[X] \setminus (A \union \{x\}) = (\carrier[X] \setminus C)$. + %$\carrier[X] \setminus (A) = \{x\} \union (\carrier[X] \setminus C)$. + + + %Therefore $\{x\}$ is open in $X$. + Omitted. + \caseOf{$C \neq B$.} + Omitted. + \end{byCase} + +\end{proof} + \begin{proposition}\label{urysohnchain_induction_begin} Let $X$ be a urysohn space. @@ -600,15 +645,16 @@ The first tept will be a formalisation of chain constructions. we have $f(x) = \rfrac{n}{\pot(m)}$. \begin{subproof} Fix $m \in \indexset[\zeta]$. - $\index[\zeta](m)$ is a urysohnchain in $X$. - Define $o : \alpha \to \intervalclosed{\zero}{1}$ such that $o(x) =$ - \begin{cases} - & 0 & \text{if} x \in A - & 1 & \text{if} x \in B - & \rfrac{n}{m} & \text{if} \exists n \in \naturals. x \in \index[\index[\zeta](m)](n) \land x \notin \index[\index[\zeta](m)](n-1) - \end{cases} - - + %$\index[\zeta](m)$ is a urysohnchain in $X$. + + %Define $o : \alpha \to \intervalclosed{\zero}{1}$ such that $o(x) =$ + %\begin{cases} + % & 0 & \text{if} x \in A + % & 1 & \text{if} x \in B + % & \rfrac{n}{m} & \text{if} \exists n \in \naturals. x \in \index[\index[\zeta](m)](n) \land x \notin \index[\index[\zeta](m)](n-1) + %\end{cases} +% + Omitted. \end{subproof} @@ -677,6 +723,7 @@ The first tept will be a formalisation of chain constructions. \begin{subproof} Fix $n \in \naturals$. Fix $x \in \carrier[X]$. + Omitted. \end{subproof} @@ -696,11 +743,12 @@ The first tept will be a formalisation of chain constructions. \begin{subproof} Fix $x \in \carrier[X]$. - + Omitted. % Contradiction by \cref{two_in_naturals,function_apply_default,reals_axiom_zero_in_reals,dom_emptyset,notin_emptyset,funs_type_apply,neg,minus,abs_behavior1}. %Follows by \cref{two_in_naturals,function_apply_default,reals_axiom_zero_in_reals,dom_emptyset,notin_emptyset,funs_type_apply,neg,minus,abs_behavior1}. \end{subproof} + Omitted. \end{subproof} @@ -709,51 +757,54 @@ The first tept will be a formalisation of chain constructions. We show that for all $x \in \dom{G}$ we have $G(x) \in \reals$. \begin{subproof} - Fix $x \in \dom{G}$. - It suffices to show that $g(x) \in \reals$. - - There exist $k \in \reals$ such that for all $\epsilon \in \reals$ such that $\epsilon > \zero$ we have there exist $N \in \naturals$ such that for all $N' \in \naturals$ such that $N' > N$ we have $\abs{\apply{\gamma(N')}{x} - k} < \epsilon$. - - We show that for all $\epsilon \in \reals$ such that $\epsilon > \zero$ we have there exist $N \in \naturals$ such that for all $N' \in \naturals$ such that $N' > N$ we have $\abs{\apply{\gamma(N')}{x} - g(x)} < \epsilon$ and $g(x)= k$. - \begin{subproof} - Fix $\epsilon \in \reals$. - - - \end{subproof} - Follows by \cref{apply,plus_one_order,ordinal_iff_suc_ordinal,natural_number_is_ordinal,subseteq,naturals_subseteq_reals,naturals_is_equal_to_two_times_naturals,reals_one_bigger_zero,one_in_reals,ordinal_prec_trichotomy,omega_is_an_ordinal,suc_intro_self,two_in_naturals,in_asymmetric,suc}. + %Fix $x \in \dom{G}$. + %It suffices to show that $g(x) \in \reals$. +% + %There exist $k \in \reals$ such that for all $\epsilon \in \reals$ such that $\epsilon > \zero$ we have there exist $N \in \naturals$ such that for all $N' \in \naturals$ such that $N' > N$ we have $\abs{\apply{\gamma(N')}{x} - k} < \epsilon$. +% + %We show that for all $\epsilon \in \reals$ such that $\epsilon > \zero$ we have there exist $N \in \naturals$ such that for all $N' \in \naturals$ such that $N' > N$ we have $\abs{\apply{\gamma(N')}{x} - g(x)} < \epsilon$ and $g(x)= k$. + %\begin{subproof} + % Fix $\epsilon \in \reals$. + % +% + %\end{subproof} + %Follows by \cref{apply,plus_one_order,ordinal_iff_suc_ordinal,natural_number_is_ordinal,subseteq,naturals_subseteq_reals,naturals_is_equal_to_two_times_naturals,reals_one_bigger_zero,one_in_reals,ordinal_prec_trichotomy,omega_is_an_ordinal,suc_intro_self,two_in_naturals,in_asymmetric,suc}. + Omitted. \end{subproof} We show that for all $x \in \dom{G}$ we have $\zero \leq G(x) \leq 1$. \begin{subproof} - Fix $x \in \dom{G}$. - Then $x \in \carrier[X]$. - \begin{byCase} - \caseOf{$x \in A$.} - For all $n \in \naturals$ we have $\apply{\gamma(n)}{x} = \zero$. - - - \caseOf{$x \notin A$.} - \begin{byCase} - \caseOf{$x \in B$.} - For all $n \in \naturals$ we have $\apply{\gamma(n)}{x} = 1$. - - \caseOf{$x \notin B$.} - Omitted. - \end{byCase} - \end{byCase} + %Fix $x \in \dom{G}$. + %Then $x \in \carrier[X]$. + %\begin{byCase} + % \caseOf{$x \in A$.} + % For all $n \in \naturals$ we have $\apply{\gamma(n)}{x} = \zero$. +% +% + % \caseOf{$x \notin A$.} + % \begin{byCase} + % \caseOf{$x \in B$.} + % For all $n \in \naturals$ we have $\apply{\gamma(n)}{x} = 1$. +% + % \caseOf{$x \notin B$.} + % Omitted. + % \end{byCase} + %\end{byCase} + Omitted. \end{subproof} We show that $G \in \funs{\carrier[X]}{\intervalclosed{\zero}{1}}$. \begin{subproof} - It suffices to show that $\ran{G} \subseteq \intervalclosed{\zero}{1}$ by \cref{fun_ran_iff,funs_intro,funs_weaken_codom}. - It suffices to show that for all $x \in \dom{G}$ we have $G(x) \in \intervalclosed{\zero}{1}$. - Fix $x \in \dom{G}$. - Then $x \in \carrier[X]$. - $g(x) = G(x)$. - We have $G(x) \in \reals$. - $\zero \leq G(x) \leq 1$. - We have $G(x) \in \intervalclosed{\zero}{1}$ . + %It suffices to show that $\ran{G} \subseteq \intervalclosed{\zero}{1}$ by \cref{fun_ran_iff,funs_intro,funs_weaken_codom}. + %It suffices to show that for all $x \in \dom{G}$ we have $G(x) \in \intervalclosed{\zero}{1}$. + %Fix $x \in \dom{G}$. + %Then $x \in \carrier[X]$. + %$g(x) = G(x)$. + %We have $G(x) \in \reals$. + %$\zero \leq G(x) \leq 1$. + %We have $G(x) \in \intervalclosed{\zero}{1}$ . + Omitted. \end{subproof} We show that $G(A) = \zero$. @@ -860,7 +911,7 @@ The first tept will be a formalisation of chain constructions. % Omitted. % \end{subproof} \end{proof} - -\begin{theorem}\label{safe} - Contradiction. -\end{theorem} +% +%\begin{theorem}\label{safe} +% Contradiction. +%\end{theorem} -- cgit v1.2.3