From 894dd1c6e66099f65ebb8860e0cdf258fa143e89 Mon Sep 17 00:00:00 2001 From: Simon-Kor <52245124+Simon-Kor@users.noreply.github.com> Date: Sat, 10 Aug 2024 16:02:43 +0200 Subject: more urysohn --- library/topology/urysohn.tex | 18 +++++++++++++++--- 1 file changed, 15 insertions(+), 3 deletions(-) diff --git a/library/topology/urysohn.tex b/library/topology/urysohn.tex index bb28116..3152de7 100644 --- a/library/topology/urysohn.tex +++ b/library/topology/urysohn.tex @@ -262,12 +262,26 @@ The first tept will be a formalisation of chain constructions. Omitted. \end{proof} +\begin{definition}\label{minimum} + $\min{X} = \{x \in X \mid \forall y \in X. x \leq y \}$. +\end{definition} + +\begin{definition}\label{maximum} + $\max{X} = \{x \in X \mid \forall y \in X. x \geq y \}$. +\end{definition} + \begin{proposition}\label{urysohnchain_induction_step_existence} Let $X$ be a urysohn space. Suppose $U$ is a urysohnchain in $X$. Then there exist $U'$ such that $U'$ is a refinmant of $U$ and $U'$ is a urysohnchain in $X$. \end{proposition} \begin{proof} + % U = ( A_{0}, A_{1}, A_{2}, ... , A_{n-1}, A_{n}) + % U' = ( A_{0}, A'_{1}, A_{1}, A'_{2}, A_{2}, ... A_{n-1}, A'_{n}, A_{n}) + + Let $m = \max{\indexset[U]}$. + For all $n \in (\indexset[U] \setminus \{m\})$ we have there exist $C \subseteq X$ + such that $\closure{\index[U](n)}{X} \subseteq \interior{C}{X} \subseteq \closure{C}{X} \subseteq \interior{\index[U](n+1)}{X}$. %\begin{definition}\label{refinmant} @@ -276,9 +290,7 @@ The first tept will be a formalisation of chain constructions. % we have there exist $c \in C'$ such that $y \subset c \subset x$ % and for all $g \in C'$ such that $g \neq c$ we have not $y \subset g \subset x$. %\end{definition} - - - + Omitted. \end{proof} -- cgit v1.2.3