From 442d732696ad431b84f6e5c72b6ee785be4fd968 Mon Sep 17 00:00:00 2001 From: adelon <22380201+adelon@users.noreply.github.com> Date: Sat, 10 Feb 2024 02:22:14 +0100 Subject: Initial commit --- library/algebra/quasigroup.tex | 36 ++++++++++++++++++++++++++++++++++++ 1 file changed, 36 insertions(+) create mode 100644 library/algebra/quasigroup.tex (limited to 'library/algebra/quasigroup.tex') diff --git a/library/algebra/quasigroup.tex b/library/algebra/quasigroup.tex new file mode 100644 index 0000000..747ab03 --- /dev/null +++ b/library/algebra/quasigroup.tex @@ -0,0 +1,36 @@ +\import{algebra/magma.tex} + +\section{Quasigroups} + +\begin{struct}\label{quasigroup} + A quasigroup $A$ is a magma equipped with + \begin{enumerate} + \item $\ldiv$ + \item $\rdiv$ + \end{enumerate} + such that + \begin{enumerate} + \item for all $a, b\in A$ we have $\ldiv (a,b)\in A$. + \item for all $a, b\in A$ we have $\rdiv (a,b)\in A$. + \item for all $a,b \in A$ we have $b = \mul(a,\ldiv (a,b))$. + \item for all $a,b \in A$ we have $b = \ldiv(a,\mul (a,b))$. + \item for all $a,b \in A$ we have $b = \mul(\rdiv (b,a),a)$. + \item for all $a,b \in A$ we have $b = \rdiv(\mul (b,a),a)$. + \end{enumerate} +\end{struct} + +% Cancelling an element on the left. +\begin{lemma}\label{quasigroup_cancel_left} + Let $A$ be a quasigroup. + Let $a,b,c \in A$. + Suppose $\mul(a,b) = \mul(a,c)$. + Then $b = c$. +\end{lemma} + +% Cancelling an element on the right. +\begin{lemma}\label{quasigroup_cancel_right} + Let $A$ be a quasigroup. + Let $a,b,c \in A$. + Suppose $\mul(a,c) = \mul(b,c)$. + Then $a = b$. +\end{lemma} -- cgit v1.2.3