From 050b56baf7a158bff0eb721e03263b121bdc23c3 Mon Sep 17 00:00:00 2001 From: Simon-Kor <52245124+Simon-Kor@users.noreply.github.com> Date: Tue, 4 Jun 2024 11:19:21 +0200 Subject: Some notation fixes and lemma for topo basis generats opens was proofed and optimizised --- library/numbers.tex | 41 +++++++++++++++++------------------------ 1 file changed, 17 insertions(+), 24 deletions(-) (limited to 'library/numbers.tex') diff --git a/library/numbers.tex b/library/numbers.tex index 5dd06da..2451730 100644 --- a/library/numbers.tex +++ b/library/numbers.tex @@ -4,8 +4,6 @@ \section{The real numbers} -%TODO: Implementing Notion for negativ number such as -x. - %TODO: %\inv{} für inverse benutzen. Per Signatur einfüheren und dann axiomatisch absicher %\cdot für multiklikation verwenden. @@ -17,11 +15,11 @@ \end{signature} \begin{signature} - $x + y$ is a set. + $x \add y$ is a set. \end{signature} \begin{signature} - $x \times y$ is a set. + $x \rmul y$ is a set. \end{signature} \begin{axiom}\label{one_in_reals} @@ -58,7 +56,7 @@ \end{axiom} \begin{axiom}\label{reals_axiom_order_def} - $x < y$ iff there exist $z \in \reals$ such that $\zero < z$ and $x + z = y$. + $x < y$ iff there exist $z \in \reals$ such that $\zero < z$ and $x \add z = y$. \end{axiom} \begin{lemma}\label{reals_one_bigger_than_zero} @@ -67,11 +65,11 @@ \begin{axiom}\label{reals_axiom_assoc} - For all $x,y,z \in \reals$ $(x + y) + z = x + (y + z)$ and $(x \times y) \times z = x \times (y \times z)$. + For all $x,y,z \in \reals$ $(x \add y) \add z = x \add (y \add z)$ and $(x \rmul y) \rmul z = x \rmul (y \rmul z)$. \end{axiom} \begin{axiom}\label{reals_axiom_kommu} - For all $x,y \in \reals$ $x + y = y + x$ and $x \times y = y \times x$. + For all $x,y \in \reals$ $x \add y = y \add x$ and $x \rmul y = y \rmul x$. \end{axiom} \begin{axiom}\label{reals_axiom_zero_in_reals} @@ -79,32 +77,32 @@ \end{axiom} \begin{axiom}\label{reals_axiom_zero} - For all $x \in \reals$ $x + \zero = x$. + For all $x \in \reals$ $x \add \zero = x$. \end{axiom} \begin{axiom}\label{reals_axiom_one} - For all $x \in \reals$ $1 \neq \zero$ and $x \times 1 = x$. + For all $x \in \reals$ $1 \neq \zero$ and $x \rmul 1 = x$. \end{axiom} \begin{axiom}\label{reals_axiom_add_invers} - For all $x \in \reals$ there exist $y \in \reals$ such that $x + y = \zero$. + For all $x \in \reals$ there exist $y \in \reals$ such that $x \add y = \zero$. \end{axiom} \begin{axiom}\label{reals_axiom_mul_invers} - For all $x \in \reals$ such that $x \neq \zero$ there exist $y \in \reals$ such that $x \times y = 1$. + For all $x \in \reals$ such that $x \neq \zero$ there exist $y \in \reals$ such that $x \rmul y = 1$. \end{axiom} \begin{axiom}\label{reals_axiom_disstro1} - For all $x,y,z \in \reals$ $x \times (y + z) = (x \times y) + (x \times z)$. + For all $x,y,z \in \reals$ $x \rmul (y \add z) = (x \rmul y) \add (x \rmul z)$. \end{axiom} \begin{proposition}\label{reals_disstro2} - For all $x,y,z \in \reals$ $(y + z) \times x = (y \times x) + (z \times x)$. + For all $x,y,z \in \reals$ $(y \add z) \rmul x = (y \rmul x) \add (z \rmul x)$. \end{proposition} \begin{proposition}\label{reals_reducion_on_addition} - For all $x,y,z \in \reals$ if $x + y = x + z$ then $y = z$. + For all $x,y,z \in \reals$ if $x \add y = x \add z$ then $y = z$. \end{proposition} \begin{axiom}\label{reals_axiom_dedekind_complete} @@ -116,20 +114,20 @@ \begin{lemma}\label{order_reals_lemma1} For all $x,y,z \in \reals$ such that $\zero < x$ if $y < z$ - then $(y \times x) < (z \times x)$. + then $(y \rmul x) < (z \rmul x)$. \end{lemma} \begin{lemma}\label{order_reals_lemma2} For all $x,y,z \in \reals$ such that $\zero < x$ if $y < z$ - then $(x \times y) < (x \times z)$. + then $(x \rmul y) < (x \rmul z)$. \end{lemma} \begin{lemma}\label{order_reals_lemma3} For all $x,y,z \in \reals$ such that $x < \zero$ if $y < z$ - then $(x \times z) < (x \times y)$. + then $(x \rmul z) < (x \rmul y)$. \end{lemma} \begin{lemma}\label{o4rder_reals_lemma} @@ -145,17 +143,13 @@ \end{lemma} \begin{axiom}\label{reals_axiom_minus} - For all $x \in \reals$ $x - x = \zero$. + For all $x \in \reals$ $x \rmiuns x = \zero$. \end{axiom} \begin{lemma}\label{reals_minus} - Assume $x,y \in \reals$. If $x - y = \zero$ then $x=y$. + Assume $x,y \in \reals$. If $x \rmiuns y = \zero$ then $x=y$. \end{lemma} -%\begin{definition}\label{reasl_supremum} %expaction "there exists" after \mid -% $\rsup{X} = \{z \mid \text{ $z \in \reals$ and for all $x,y$ such that $x \in X$ and $y,x \in \reals$ and $x < y$ we have $z \leq y$ }\}$. -%\end{definition} - \begin{definition}\label{upper_bound} $x$ is an upper bound of $X$ iff for all $y \in X$ we have $x > y$. \end{definition} @@ -185,7 +179,6 @@ \end{definition} \begin{lemma}\label{infimum_unique} - %Let $x,y \in \reals$ and let $X$ be a subset of $\reals$. If $x$ is a greatest lower bound of $X$ and $y$ is a greatest lower bound of $X$ then $x = y$. \end{lemma} -- cgit v1.2.3