From 3795588d157864a411baf2fc3afb31f9f5184d93 Mon Sep 17 00:00:00 2001 From: Simon-Kor <52245124+Simon-Kor@users.noreply.github.com> Date: Tue, 7 May 2024 14:41:15 +0200 Subject: Formalization of metric spaces and some cleaning of numbers.tex Formalization of metric spaces: Therefore we introduced the predicate metric and its axiomatization. Then we introduced the term metric space in dependence of a metric function. This metric space is automatically a a topological space. --- library/numbers.tex | 72 +++++++++++++++++++++++++++-------------------------- 1 file changed, 37 insertions(+), 35 deletions(-) (limited to 'library/numbers.tex') diff --git a/library/numbers.tex b/library/numbers.tex index 93623fa..afb7d3f 100644 --- a/library/numbers.tex +++ b/library/numbers.tex @@ -4,6 +4,14 @@ \section{The real numbers} +%TODO: Implementing Notion for negativ number such as -x. + +%TODO: +%\inv{} für inverse benutzen. Per Signatur einfüheren und dann axiomatisch absicher +%\cdot für multiklikation verwenden. +%< für die relation benutzen. + + \begin{signature} $\reals$ is a set. \end{signature} @@ -22,19 +30,31 @@ \begin{axiom}\label{reals_axiom_order} $\lt[\reals]$ is an order on $\reals$. - %$\reals$ is an ordered set. \end{axiom} \begin{axiom}\label{reals_axiom_strictorder} $\lt[\reals]$ is a strict order. \end{axiom} +\begin{abbreviation}\label{less_on_reals} + $x < y$ iff $(x,y) \in \lt[\reals]$. +\end{abbreviation} + +\begin{abbreviation}\label{greater_on_reals} + $x > y$ iff $y < x$. +\end{abbreviation} + +\begin{abbreviation}\label{lesseq_on_reals} + $x \leq y$ iff it is wrong that $x > y$. +\end{abbreviation} + +\begin{abbreviation}\label{greatereq_on_reals} + $x \geq y$ iff it is wrong that $x < y$. +\end{abbreviation} + \begin{axiom}\label{reals_axiom_dense} For all $x,y \in \reals$ if $(x,y)\in \lt[\reals]$ then there exist $z \in \reals$ such that $(x,z) \in \lt[\reals]$ and $(z,y) \in \lt[\reals]$. - - %For all $X,Y \subseteq \reals$ if for all $x,y$ $x\in X$ and $y \in Y$ such that $x \lt[\reals] y$ - %then there exist a $z \in \reals$ such that if $x \neq z$ and $y \neq z$ $x \lt[\reals] z$ and $z \lt[\reals] y$. \end{axiom} \begin{axiom}\label{reals_axiom_order_def} @@ -57,18 +77,12 @@ \begin{axiom}\label{reals_axiom_zero_in_reals} $\zero \in \reals$. \end{axiom} - -%\begin{axiom}\label{reals_axiom_one_in_reals} -% $\one \in \reals$. -%\end{axiom} - + \begin{axiom}\label{reals_axiom_zero} - %There exist $\zero \in \reals$ such that For all $x \in \reals$ $x + \zero = x$. \end{axiom} \begin{axiom}\label{reals_axiom_one} - %There exist $1 \in \reals$ such that For all $x \in \reals$ $1 \neq \zero$ and $x \times 1 = x$. \end{axiom} @@ -76,11 +90,6 @@ For all $x \in \reals$ there exist $y \in \reals$ such that $x + y = \zero$. \end{axiom} -%TODO: Implementing Notion for negativ number such as -x. - -%\begin{abbreviation}\label{reals_notion_minus} -% $y = -x$ iff $x + y = \zero$. -%\end{abbreviation} %This abbrevation result in a killed process. \begin{axiom}\label{reals_axiom_mul_invers} For all $x \in \reals$ there exist $y \in \reals$ such that $x \neq \zero$ and $x \times y = 1$. @@ -98,27 +107,8 @@ For all $x,y,z \in \reals$ if $x + y = x + z$ then $y = z$. \end{proposition} -\begin{signature} - $\invers$ is a set. -\begin{signature} - -%TODO: -%x \rless y in einer signatur hinzufügen und dann axiom x+z = y und dann \rlt in def per iff -%\inv{} für inverse benutzen. Per Signatur einfüheren und dann axiomatisch absicher -%\cdot für multiklikation verwenden. -%< für die relation benutzen. - -%\begin{signature} -% $y^{\rightarrow}$ is a function. -%\end{signature} -%\begin{axiom}\label{notion_multi_invers} -% If $y \in \reals$ then $\invers{y} \in \reals$ and $y \times y^{\rightarrow} = 1$. -%\end{axiom} -%\begin{abbreviation}\label{notion_fraction} -% $\frac{x}{y} = x \times y^{\rightarrow}$. -%\end{abbreviation} \begin{lemma}\label{order_reals_lemma1} For all $x,y,z \in \reals$ such that $(\zero,x) \in \lt[\reals]$ @@ -138,3 +128,15 @@ if $(y,z) \in \lt[\reals]$ then $((x \times z), (x \times y)) \in \lt[\reals]$. \end{lemma} + +\begin{lemma}\label{a} + For all $x,y \in \reals$ if $x > y$ then $x \geq y$. +\end{lemma} + +\begin{lemma}\label{aa} + For all $x,y \in \reals$ if $x < y$ then $x \leq y$. +\end{lemma} + +\begin{lemma}\label{aaa} + For all $x,y \in \reals$ if $x \leq y \leq x$ then $x=y$. +\end{lemma} \ No newline at end of file -- cgit v1.2.3